Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural Hydrophobicity

The most common hydrophobic adsorbents are activated carbon and siUcahte. The latter is of particular interest since the affinity for water is very low indeed the heat of adsorption is even smaller than the latent heat of vaporization (3). It seems clear that the channel stmcture of siUcahte must inhibit the hydrogen bonding between occluded water molecules, thus enhancing the hydrophobic nature of the adsorbent. As a result, siUcahte has some potential as a selective adsorbent for the separation of alcohols and other organics from dilute aqueous solutions (4). [Pg.252]

Because of their hydrophobic nature, siUcones entering the aquatic environment should be significantly absorbed by sediment or migrate to the air—water interface. SiUcones have been measured in the aqueous surface microlayer at two estuarian locations and found to be comparable to levels measured in bulk (505). Volatile surface siloxanes become airborne by evaporation, and higher molecular weight species are dispersed as aerosols. [Pg.61]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

The hydrophobic nature of the acetate groups results in a negative heat of solution (61—64), which increases as the number of acetate groups is increased. This means that the critical temperature or the 9 temperature is lower, ie, the solubiUty decreases as the temperature is increased. [Pg.477]

The hydrophilic nature of the carboxyl group balanced against the hydrophobic nature of the hydrocarbon chain allows long-chain fatty acids to form monomolecular films at aqueous Hquid-gas, Hquid—Hquid, or Hquid—soHd interfaces (18). [Pg.83]

Acrylate polymers also have fully saturated polymer backbones free of any heteroatoms in the main chain. This makes the polymers highly resistant to oxidation, photo-degradation and chemical attack. The acrylate groups are esters, which could be hydrolyzed under severe conditions. However, the hydrophobic nature of most acrylic polymers minimizes the risk for hydrolysis and, even if this reaction happened to some extent, the polymer backbone would still be intact. Other desirable acrylate properties include the following ... [Pg.486]

Numerous other polyols are commercially available, some from renewable resources. Urethanes based on castor oil have been used for many years as encapsulants for electronic components, due to their hydrophobic nature [29J. [Pg.771]

The lipids found in biological systems are either hydrophobic (containing only nonpolar groups) or amphipathic, which means they possess both polar and nonpolar groups. The hydrophobic nature of lipid molecules allows membranes to act as effective barriers to more polar molecules. In this chapter, we discuss the chemical and physical properties of the various classes of lipid molecules. The following chapter considers membranes, whose properties depend intimately on their lipid constituents. [Pg.238]

Melt spinning polyesters is preferred to solution spinning because of its lower cost. Due to the hydrophobic nature of the fiber, sulfonated terephthalic acid may be used as a comonomer to provide anionic sites for cationic dyes. Small amounts of aliphatic diacids such as adipic acid may also be used to increase the dyeability of the fibers by disturbing the fiber s crystallinity. [Pg.362]

Dendrimers can also be prepared with an inverse relationship between their hydrophobic and hydrophilic constituents, i.e. with a hydrophobic periphery and a hydrophilic interior. They can then behave as reverse micelles and are able to concentrate polar molecules from solutions of nonpolar solvents. The shape of these molecules, when dissolved in a solvent that matches the hydrophobic nature of the periphery, is spherical with chain-ends extended towards the solvent. The interior may then collapse to a minimum volume, so that unfavourable interactions that might result from penetration by solvent molecules are minimized. [Pg.138]

The results of mechanical properties (presented later in this section) showed that up to 20 phr, the biofillers showed superior strength and elongation behavior than CB, cellulose being the best. After 30 phr the mechanical properties of biocomposites deteriorated because of the poor compatibility of hydrophilic biopolymers with hydrophobic natural rubber(results not shown). While increasing quantity of CB in composites leads to constant increase in the mechanical properties. Scanning electron micrographs revealed presence of polymer-filler adhesion in case of biocomposites at 20 phr. [Pg.122]

The interaction between polymer matrix and filler leads to the formation of a bound polymer in close proximity to the reinforcing filler, which restricts the solvent uptake [13]. The composites containing acetylated cellulose fillers exhibited higher uptake of toluene compared to water in accordance with their hydrophobic nature. [Pg.129]

It can be concluded that the concentrations of the PFAM solution is an important factor for the PFAM film formed on the slider surface to affect the stiction and friction in the CSS tests. If the concentration is controlled around 500 ppm, an ideal surface topography, good hydrophobic nature, a preferred film thickness, and better frictional and anti-wear properties can be obtained. [Pg.214]

Due to a waxy component in the cell wall these organisms are difficult to stain with ordinary stain solutions, the hydrophobic nature of the wall being stain repellent however, if the bacterial smear on the slide is warmed with the stain, the cells are dyed so strongly that they are not decolorized by washing with dilute acid, hence the term acid-fast. Many bacterial spores exhibit the phenomenon of acid fastness. [Pg.32]

Stable dispersion of water-insoluble and/or hydrophobic natural pigment such as carotenoid, curcumin, porphyrin pigment, or vegetable carbon black in form of bodies of average size of 10 ram Addition of 0.5 ppm P-carotene to yogurt containing 200 ppm riboflavin color did not change after 40 days at 6°C compared with control (decoloration at 1 day)... [Pg.308]

At present, the most promising methods for synthetic colorant analysis seem to be those based on separation approaches such as HPLC and capillary electrophoresis (CE). CE is the method of choice for the determination of synthetic dyes in biological materials while HPLC is generally a more suitable method for the identification and determination of hydrophobic natural pigments, having a better sensitivity and efficiency than CE. [Pg.542]

Liquid membranes consist of an organic phase, which by its hydrophobic nature is relatively impermeable to ions. Originally organic solvents such as decanol were used in conjunction with a porous hydrophobic membrane. These have been replaced by plasticized polyvinyl chloride membranes which behave like liquids yet have improved mechanical properties Other polymers such as silicone, polyurethane and ururshi, a... [Pg.58]

The dielectric constant of the solvent in the microenvironment of the polymer chain has been shown to be different from that in the bulk solvent (19). This change in dielectric constant might enhance the nucleophilicity of the pyridine ring and therefore increase the rate of quaternization. The kinetic results are consistent with the observations of Overberger et al., (20), who showed that increased hydrophobic nature of the substrate led to faster reaction rates in nucleophilic catalysis. In the present case one would expect the butadiene copolymer to be more hydrophobic than the methylvinylether copolymer. An alternative synthesis of supernucleophilic polymers has been achieved using the following reaction sequence. [Pg.77]

The same applies to the historic gas-hydrates (hydrate clathrates, Fig. 5)17,18). However, on principle, only such molecules are suited for inclusion into the complicated H-bridge networks of gas-hydrates which do not interfere with the H-bridges of water, but have a hydrophobic nature. More recent hosts related to this inclusion principle are given in Chapter 3 of this book. [Pg.58]

Bioconcentration Factor - Fish/Water (BCF). The partitioning of a chemical between water and fish is yet another expression of the hydrophobic nature of the chemical. The ratio of chemical in the fish to that in the water at equilibrium is defined as the bioconcentration factor. [Pg.108]

Carotenoids are also present in animals, including humans, where they are selectively absorbed from diet (Furr and Clark 1997). Because of their hydrophobic nature, carotenoids are located either in the lipid bilayer portion of membranes or form complexes with specific proteins, usually associated with membranes. In animals and humans, dietary carotenoids are transported in blood plasma as complexes with lipoproteins (Krinsky et al. 1958, Tso 1981) and accumulate in various organs and tissues (Parker 1989, Kaplan et al. 1990, Tanumihardjo et al. 1990, Schmitz et al. 1991, Khachik et al. 1998, Hata et al. 2000). The highest concentration of carotenoids can be found in the eye retina of primates. In the retina of the human eye, where two dipolar carotenoids, lutein and zeaxan-thin, selectively accumulate from blood plasma, this concentration can reach as high as 0.1-1.0mM (Snodderly et al. 1984, Landrum et al. 1999). It has been shown that in the retina, carotenoids are associated with lipid bilayer membranes (Sommerburg et al. 1999, Rapp et al. 2000) although, some macular carotenoids may be connected to specific membrane-bound proteins (Bernstein et al. 1997, Bhosale et al. 2004). [Pg.190]


See other pages where Natural Hydrophobicity is mentioned: [Pg.370]    [Pg.440]    [Pg.442]    [Pg.210]    [Pg.348]    [Pg.222]    [Pg.376]    [Pg.157]    [Pg.243]    [Pg.260]    [Pg.496]    [Pg.878]    [Pg.152]    [Pg.11]    [Pg.8]    [Pg.127]    [Pg.225]    [Pg.241]    [Pg.231]    [Pg.186]    [Pg.908]    [Pg.110]    [Pg.339]    [Pg.181]    [Pg.165]    [Pg.253]    [Pg.290]    [Pg.294]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Amino acids hydrophobic nature

Fluorinated hydrocarbons, hydrophobic nature

Hydrophobic natural products

Hydrophobic nature

Hydrophobic nature

Hydrophobic regions nature

Natural organic matter hydrophobic interactions

Nature of Hydrophobic Entity

Siloxanes hydrophobic nature

Sugars hydrophobic nature

© 2024 chempedia.info