Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane-polystyrene copolymer

Gun Propellents. Low sensitivity gun propeUants, often referred to as LOVA (low vulnerabUity ammunition), use RDX or HMX as the principal energy components, and desensitizing binders such as ceUulose acetate butyrate or thermoplastic elastomers (TPE) including poly acetal—polyurethane block copolymers, polystyrene—polyacrjiate copolymers, and glycidyl azide polymers (GAP) to provide the required mechanical... [Pg.40]

Siloxane containing polyester, poly(alkylene oxide) and polystyrene type copolymers have been used to improve the heat resistance, lubricity and flow properties of epoxy resin powder coatings 43). Thermally stable polyester-polysiloxane segmented copolymers have been shown to improve the flow, antifriction properties and scratch resistance of acrylic based auto repair lacquers 408). Organohydroxy-terminated siloxanes are also effective internal mold release agents in polyurethane reaction injection molding processes 409). [Pg.74]

The nature of the hard domains differs for the various block copolymers. The amorphous polystyrene blocks in the ABA block copolymers are hard because the glass transition temperature (100°C) is considerably above ambient temperature, i.e., the polystyrene blocks are in the glassy state. However, there is some controversy about the nature of the hard domains in the various multiblock copolymers. The polyurethane blocks in the polyester-polyurethane and polyether-polyurethane copolymers have a glass transition temperature above ambient temperature but also derive their hard behavior from hydrogen-bonding and low levels of crystallinity. The aromatic polyester (usually terephthalate) blocks in the polyether-polyester multiblock copolymer appear to derive their hardness entirely from crystallinity. [Pg.31]

Spent resins are generally compatible with the polymer matrix material. Generally, the polymer and the resin do not interact chemically. The immobilization of spent ion-exchange resins in polymers is a common application all over the world. Epoxy resins, polyesters, polyethylene, polystyrene and copolymers, polyurethane, phenol-formaldehyde, and polystyrene are among the polymers used (IAEA, 1988). Inorganic materials are generally not immobilized using polymers because they are more acceptable to other immobilization matrices such as cement. [Pg.352]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]

Block copolymers are long-chain molecules composed of multiple blocks of distinct monomers (see Fig. 17). They are widely used as adhesives, and because they can reduce interfacial energy they can act as compatibilizers in polymer blends. In addition, many of the novel and fascinating properties of block copolymers arise from microphase separation. Thermoplastic elastomers, such as polyurethanes and polystyrene-polyisoprene-polystyrene triblock copolymers, act like cross-linked elastomers, although there is no true cross-linking. Instead, rubbery portions of the... [Pg.1093]

Heterogeneous blends (including phase separated block copolymers) showing the expected sigmoidal behavior over the entire composition range include studies on polysulfone-siloxane block copolymers [174], styrene-mefhacrylonitrile (SMAN) block copolymers [175] and polystyrene/polyurethane blends [176]. [Pg.362]

MAJOR POLYMER APPLICATIONS acrylics, polyamide-6, polycarbonate, polyester, polyethylene, polymethylmethacrylate, polypropylene, polystyrene, polyurethane, SAN, SBS, styrenic block copolymer... [Pg.18]

MAJOR POLYMER APPLICATIONS acrylics, chlorinated polyvinylchloride, ethylene methyl acrylate copolymer, methacrylate copolymer, polyester, polyetherimide, polyoxymethylene, polystyrene, polyurethane, proteins ... [Pg.27]

There are several types including polyester (Hytrel by Du Pont Co.), polystyrene-butadiene—polystyrene block copolymers (Kra-ton —KRATON Polymers U.S LLC., www.kraton. com), polystyrene—isoprene—polystyrene block copolymers (Solprene —Dynasol Elastomers, http // dynasolelastomers.com/), polyolefin (TPR thermoplastics rubber by Uniroyal, Inc.), and polyurethane. [Pg.131]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Acrylic Resins. The first synthetic polymer denture material, used throughout much of the 20th century, was based on the discovery of vulcanised mbber in 1839. Other polymers explored for denture and other dental uses have included ceUuloid, phenolformaldehyde resins, and vinyl chloride copolymers. Polystyrene, polycarbonates, polyurethanes, and acryHc resins have also been used for dental polymers. Because of the unique combination of properties, eg, aesthetics and ease of fabrication, acryHc resins based on methyl methacrylate and its polymer and/or copolymers have received the most attention since their introduction in 1937. However, deficiencies include excessive polymerization shrinkage and poor abrasion resistance. Polymers used in dental appHcation should have minimal dimensional changes during and subsequent to polymerization exceUent chemical, physical, and color stabiHty processabiHty and biocompatibiHty and the abiHty to blend with contiguous tissues. [Pg.488]

Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73]. Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73].
Xu S, Chen B, Tang T, Huang B. Syndiotactic polystyrene/thermoplastic polyurethane blends using poly(styrene-l)-4-vinylpyridine) diblock copolymer as a compatibilizer. Polymer 1999 40 3399-3406. [Pg.101]

Physical Stabilization Process. Cellular polystyrene, the outstanding example polytvinyl chloride) copolymers of styrene and acrylonitrile (SAN copolymers) and polyethylene can be manufactured by this process, Chemical Stabilization Processes. This method is more versatile and thus has been used successfully for more materials than the physical stabilization process. Chemical stabilization is more adaptable for condensation polymers than for vinyl polymers because of the fast yet controllable curing reactions and the absence of atmospheric inhibition. Foamed plastics produced by these processes include polyurethane foams, polyisocyanurates. and polyphenols. [Pg.664]

Order-disorder transitions and spinodals were computed for linear multi block copolymers with differing sequence distributions by Fredrickson et al. (1992). This type of copolymer includes polyurethanes, styrene-butadiene rubber, high impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) block copolymers. Thus the theory is applicable to a broad range of industrial thermoplastic elastomers and polyurethanes. The parameter... [Pg.79]

PES = Polyester-styrene copolymer NG = Nitroglycerine PS NGU - Polystyrene plasticizer with dioctylphthalate = Nitroguanidine PU = Polyurethane NC = Nitrocellulose ... [Pg.46]

PS PSF PSU PTFE PU PUR PVA PVAL PVB PVC PVCA PVDA PVDC PVDF PVF PVOH SAN SB SBC SBR SMA SMC TA TDI TEFE TPA UF ULDPE UP UR VLDPE ZNC Polystyrene Polysulfone (also PSU) Polysulfone (also PSF) Polytetrafluoroethylene Polyurethane Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl chloride-acetate) Poly(vinylidene acetate) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl fluoride) Poly(vinyl alcohol) Styrene-acrylonitrile copolymer Styrene-butadiene copolymer Styrene block copolymer Styrene butadiene rubber Styrene-maleic anhydride (also SMC) Styrene-maleic anhydride (also SMA) Terephthalic acid (also TPA) Toluene diisocyanate Ethylene-tetrafluoroethylene copolymer Terephthalic acid (also TA) Urea formaldehyde Ultralow-density polyethylene Unsaturated polyester resin Urethane Very low-density polyethylene Ziegler-Natta catalyst... [Pg.960]

PVC can be blended with numerous other polymers to give it better processability and impact resistance. For the manufacture of food contact materials the following polymerizates and/or polymer mixtures from polymers manufactured from the above mentioned starting materials can be used Chlorinated polyolefins blends of styrene and graft copolymers and mixtures of polystyrene with polymerisate blends butadiene-acrylonitrile-copolymer blends (hard rubber) blends of ethylene and propylene, butylene, vinyl ester, and unsaturated aliphatic acids as well as salts and esters plasticizerfrec blends of methacrylic acid esters and acrylic acid esters with monofunctional saturated alcohols (Ci-C18) as well as blends of the esters of methacrylic acid butadiene and styrene as well as polymer blends of acrylic acid butyl ester and vinylpyrrolidone polyurethane manufactured from 1,6-hexamethylene diisocyanate, 1.4-butandiol and aliphatic polyesters from adipic acid and glycols. [Pg.31]

Phosphorus Phosphate esters and others (halogenated and nonhalogenated) Polyurethane foams, polyesters, and thermoplastics such as flexible PVC, modified PPO, and cellulosics Also polyethylene, polypropylene, polystyrene, and ethylene/propylene copolymers Akzo Nobel, Albemarle, Amfine Chemical Corp., Amspec Chemical, Bayer, Ciba Specialty Chemical-Melapur, Clariant, Cytec, Daihachi Chemical Industry, Great Lakes, Italmatch Chemicals, Nitroil, Rhodia... [Pg.180]

The substantial work on polystyrene/polybutadiene and polystyrene/ polyisoprene blends and diblock and triblock copolymer systems has lead to a general understanding of the nature of phase separation in regular block copolymer systems (5,6). The additional complexities of multiblocks with variable block length as well as possible hard- and/or soft-phase crystallinity makes the morphological characterization of polyurethane systems a challenge. [Pg.38]

The moisture resistance, low cost, and low-density closed-cell structure of many cellular polymers resulted in their acceptance for buoyancy in boats, floating docks, and buoys. Because each cell is a separate flotation unit, these materials cannot be destroyed by a single puncture. Foamed-in-place polyurethane between thin skins of high tensile strength is used in pleasure craft [98]. Other cellular polymers that have been used where buoyancy is needed are produced from polystyrene, polyethylene, poly(vinyl chloride), and certain types of rubber. Foams made from styrene-acrylonitrile copolymers are resistant to petroleum products [99,100]. [Pg.224]


See other pages where Polyurethane-polystyrene copolymer is mentioned: [Pg.279]    [Pg.262]    [Pg.408]    [Pg.185]    [Pg.49]    [Pg.3]    [Pg.69]    [Pg.48]    [Pg.205]    [Pg.142]    [Pg.75]    [Pg.74]    [Pg.5]    [Pg.207]    [Pg.21]    [Pg.547]    [Pg.643]    [Pg.323]    [Pg.458]    [Pg.487]    [Pg.493]   
See also in sourсe #XX -- [ Pg.72 , Pg.106 ]




SEARCH



Polystyrene copolymers

© 2024 chempedia.info