Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse osmosis polymeric membranes

Yasuda, H. "Composite Reverse Osmosis Membranes Prepared by Plasma Polymerization," in "Reverse Osmosis and Synthetic Membranes," Sourirajan, S., Ed., National Research Council, Canada, Ottawa, 1977, p.263. [Pg.325]

This value is taken into account when planning hoUow-fiber dimensions. A partial account of these considerations can be found in References 6 and 7. In practical appUcations, ie, reverse osmosis, membrane compaction with time is experimentally derived as a function of the polymeric material at given temperatures and pressures (8). [Pg.147]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Membranes made by interfacial polymerization have a dense, highly cross-linked interfacial polymer layer formed on the surface of the support membrane at the interface of the two solutions. A less cross-linked, more permeable hydrogel layer forms under this surface layer and fills the pores of the support membrane. Because the dense cross-linked polymer layer can only form at the interface, it is extremely thin, on the order of 0.1 p.m or less, and the permeation flux is high. Because the polymer is highly cross-linked, its selectivity is also high. The first reverse osmosis membranes made this way were 5—10 times less salt-permeable than the best membranes with comparable water fluxes made by other techniques. [Pg.68]

Interfacial polymerization membranes are less appHcable to gas separation because of the water swollen hydrogel that fills the pores of the support membrane. In reverse osmosis, this layer is highly water swollen and offers Httle resistance to water flow, but when the membrane is dried and used in gas separations the gel becomes a rigid glass with very low gas permeabiUty. This glassy polymer fills the membrane pores and, as a result, defect-free interfacial composite membranes usually have low gas fluxes, although their selectivities can be good. [Pg.68]

Membrane Porosity Separation membranes run a gamut of porosity (see Fig. 22-48). Polymeric and metallic gas separation membranes, electrodialysis membranes, pervaporation membranes, and reverse osmosis membranes are nonporous, although there is hnger-ing controversy over the nonporosity of the latter. Porous membranes are used for microfiltration and ultrafiltratiou. Nanofiltration membranes are probably charged porous structures. [Pg.2025]

UF Membranes as a Substrate for RO An important use of UF membranes is as a substrate for composite reverse-osmosis membranes. After the UF membrane (usually polysulfone) is prepared, it is coated with an aqueous solution of an amine, then dipped in an organic solution of an acid chloride to produce an interfacially polymerized membrane coating. [Pg.2038]

Membranes used for the pressure driven separation processes, microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO), as well as those used for dialysis, are most commonly made of polymeric materials. Initially most such membranes were cellulosic in nature. These ate now being replaced by polyamide, polysulphone, polycarbonate and several other advanced polymers. These synthetic polymers have improved chemical stability and better resistance to microbial degradation. Membranes have most commonly been produced by a form of phase inversion known as immersion precipitation.11 This process has four main steps ... [Pg.357]

Geong and coworkers reported a new concept for the formation of zeolite/ polymer mixed-matrix reverse osmosis (RO) membranes by interfacial polymerization of mixed-matrix thin films in situ on porous polysulfone (PSF) supports [83]. The mixed-matrix films comprise NaA zeoHte nanoparticles dispersed within 50-200 nm polyamide films. It was found that the surface of the mixed-matrix films was smoother, more hydrophilic and more negatively charged than the surface of the neat polyamide RO membranes. These NaA/polyamide mixed-matrix membranes were tested for a water desalination application. It was demonstrated that the pure water permeability of the mixed-matrix membranes at the highest nanoparticle loadings was nearly doubled over that of the polyamide membranes with equivalent solute rejections. The authors also proved that the micropores of the NaA zeolites played an active role in water permeation and solute rejection. [Pg.346]

The membranes used for pervaporation are similar to reverse osmosis membranes, i.e. both are composite membranes consisting of a very thin dense permselective film on top of a nonselective porous support. In pervaporation, however, the membrane is highly swollen at the feed side and relatively dry at the permeate side. Two different types of pervaporation membranes based on polymeric materials were developed at about the same time in the early 1980s [31] ... [Pg.531]

Generally, a distinction can be made between membrane bioreactors based on cells performing a desired conversion and processes based on enzymes. In ceU-based processes, bacteria, plant and mammalian cells are used for the production of (fine) chemicals, pharmaceuticals and food additives or for the treatment of waste streams. Enzyme-based membrane bioreactors are typically used for the degradation of natural polymeric materials Hke starch, cellulose or proteins or for the resolution of optically active components in the pharmaceutical, agrochemical, food and chemical industry [50, 51]. In general, only ultrafiltration (UF) or microfiltration (MF)-based processes have been reported and little is known on the application of reverse osmosis (RO) or nanofiltration (NF) in membrane bioreactors. Additionally, membrane contactor systems have been developed, based on micro-porous polyolefin or teflon membranes [52-55]. [Pg.536]

Materials Science of Reverse Osmosis Membranes - Characterization of Polymeric Membrane Materials... [Pg.37]

R. KesCmq, Synthetic Polymeric Membranes, McGraw-Hill, New York (1971). R. Kesting in Reverse Osmosis and Synthetic Membranes, S. Sourirajan, ed.. National Research Council, Canada Publ. No. 15627 (1977). [Pg.222]

Relationship Between Nodular and Rejecting Layers. Nodular formation was conceived by Maler and Scheuerman (14) and was shown to exist in the skin structure of anisotropic cellulose acetate membranes by Schultz and Asunmaa ( ), who ion etched the skin to discover an assembly of close-packed, 188 A in diameter spheres. Resting (15) has identified this kind of micellar structure in dry cellulose ester reverse osmosis membranes, and Panar, et al. (16) has identified their existence in the polyamide derivatives. Our work has shown that nodules exist in most polymeric membranes cast into a nonsolvent bath, where gelation at the interface is caused by initial depletion of solvent, as shown in Case B, which follows restricted Inward contraction of the interfacial zone. This leads to a dispersed phase of micelles within a continuous phase (designated as "polymer-poor phase") composed of a mixture of solvents, coagulant, and a dissolved fraction of the polymer. The formation of such a skin is delineated in the scheme shown in Figure 11. [Pg.278]

In bioprocesses, a variety of apparatus that incorporate artificial (usually polymeric) membranes are often used for both separations and bioreactions. In this chapter, we shall briefly review the general principles of several membrane processes, namely, dialysis, ultrafiltration (UF), microfiltration (MF), and reverse osmosis (RO). [Pg.133]

Although these composite fibers were developed lor reverse osmosis lltcir acceptance in the desalinatiun industry has been limited due to insufficient selectivity and oxidative stability. The concept, however, is extremely viable composite membrane fiat films made from interfacial polymerization have gained wide industry approval. Hollow libers using Ibis technique to give equivalent properties and life, yet lo be developed, should be market tested during the 1990s. [Pg.780]

We can use the same filtration principle for the separation of small particles down to small size of the molecular level by using polymeric membranes. Depending upon the size range of the particles separated, membrane separation processes can be classified into three categories microfiltration, ultrafiltration, and reverse osmosis, the major differences of which are summarized in Table 10.2. [Pg.285]

Reverse osmosis, pervaporation and polymeric gas separation membranes have a dense polymer layer with no visible pores, in which the separation occurs. These membranes show different transport rates for molecules as small as 2-5 A in diameter. The fluxes of permeants through these membranes are also much lower than through the microporous membranes. Transport is best described by the solution-diffusion model. The spaces between the polymer chains in these membranes are less than 5 A in diameter and so are within the normal range of thermal motion of the polymer chains that make up the membrane matrix. Molecules permeate the membrane through free volume elements between the polymer chains that are transient on the timescale of the diffusion processes occurring. [Pg.17]

Figure 3.20 Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent crosslinking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film forms at the interface of the two solutions [47]. Reprinted from L.T. Rozelle, J.E. Cadotte, K.E. Cobian, and C.V. Knopp, Jr, Nonpolysaccharide Membranes for Reverse Osmosis NS-100 Membranes, in Reverse Osmosis and Synthetic Membranes, S. Sourirajan (ed.), National Research Council Canada, Ottawa, Canada (1977) by permission from NRC Research Press... Figure 3.20 Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent crosslinking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film forms at the interface of the two solutions [47]. Reprinted from L.T. Rozelle, J.E. Cadotte, K.E. Cobian, and C.V. Knopp, Jr, Nonpolysaccharide Membranes for Reverse Osmosis NS-100 Membranes, in Reverse Osmosis and Synthetic Membranes, S. Sourirajan (ed.), National Research Council Canada, Ottawa, Canada (1977) by permission from NRC Research Press...
The most extensive studies of plasma-polymerized membranes were performed in the 1970s and early 1980s by Yasuda, who tried to develop high-performance reverse osmosis membranes by depositing plasma films onto microporous poly-sulfone films [60,61]. More recently other workers have studied the gas permeability of plasma-polymerized films. For example, Stancell and Spencer [62] were able to obtain a gas separation plasma membrane with a hydrogen/methane selectivity of almost 300, and Kawakami et al. [63] have reported plasma membranes... [Pg.124]

Since the discovery by Cadotte and his co-workers that high-flux, high-rejection reverse osmosis membranes can be made by interfacial polymerization [7,9,10], this method has become the new industry standard. Interfacial composite membranes have significantly higher salt rejections and fluxes than cellulose acetate membranes. The first membranes made by Cadotte had salt rejections in tests with 3.5 % sodium chloride solutions (synthetic seawater) of greater than 99 % and fluxes of 18 gal/ft2 day at a pressure of 1500 psi. The membranes could also be operated at temperatures above 35 °C, the temperature ceiling for Loeb-Sourirajan cellulose acetate membranes. Today s interfacial composite membranes are significantly better. Typical membranes, tested with 3.5 % sodium chloride solutions,... [Pg.201]

Table 5.1 Characteristics of major interfacial polymerization reverse osmosis membranes... Table 5.1 Characteristics of major interfacial polymerization reverse osmosis membranes...
R. Endoh, T. Tanaka, M. Kurihara and K. Ikeda, New Polymeric Materials for Reverse Osmosis Membranes, Desalination 21, 35 (1977). [Pg.233]


See other pages where Reverse osmosis polymeric membranes is mentioned: [Pg.99]    [Pg.348]    [Pg.533]    [Pg.150]    [Pg.154]    [Pg.60]    [Pg.83]    [Pg.2228]    [Pg.778]    [Pg.439]    [Pg.352]    [Pg.39]    [Pg.327]    [Pg.44]    [Pg.364]    [Pg.371]    [Pg.83]    [Pg.533]    [Pg.84]    [Pg.1022]    [Pg.3]    [Pg.15]    [Pg.118]   
See also in sourсe #XX -- [ Pg.2329 ]




SEARCH



Membranes reverse osmosis

Osmosis

Osmosis reversed

Polymeric membranes

Reverse osmosis

Reversible polymerization

© 2024 chempedia.info