Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeate Side

Fig. 22. Multileaf spiral-wound module, used to avoid excessive pressure drops on the permeate side of the membrane. Large, 30-cm diameter modules may have as many as 30 membrane envelopes, each with a membrane area of about 2 m. ... Fig. 22. Multileaf spiral-wound module, used to avoid excessive pressure drops on the permeate side of the membrane. Large, 30-cm diameter modules may have as many as 30 membrane envelopes, each with a membrane area of about 2 m. ...
A third factor is the ease with which various membrane materials can be fabricated into a particular module design. Almost ah membranes can be formed into plate-and-frame, spiral, and tubular modules, but many membrane materials caimot be fabricated into hollow-fine fibers or capihary fibers. Finahy, the suitabiHty of the module design for high pressure operation and the relative magnitude of pressure drops on the feed and permeate sides of the membrane can sometimes be important considerations. [Pg.74]

Spiral-wound modules are much more commonly used in low pressure or vacuum gas separation appHcations, such as the production of oxygen-enriched air, or the separation of organic vapors from air. In these appHcations, the feed gas is at close to ambient pressure, and a vacuum is drawn on the permeate side of the membrane. Parasitic pressure drops on the permeate side of the membrane and the difficulty in making high performance hollow-fine fiber membranes from the mbbery polymers used to make these membranes both work against hollow-fine fiber modules for this appHcation. [Pg.75]

Pervaporation operates under constraints similar to low pressure gas-separation. Pressure drops on the permeate side of the membrane must be small, and many prevaporation membrane materials are mbbery. For this reason, spiral-wound modules and plate-and-frame systems ate both in use. [Pg.75]

The most convenient mathematical method of describing pervaporation is to divide the overall separation processes into two steps, as shown in Figure 40. The first is evaporation of the feed Hquid to form a (hypothetical) saturated vapor phase on the feed side of the membrane. The second is permeation of this vapor through the membrane to the low pressure permeate side of the membrane. Although no evaporation actually takes place on the feed side of the membrane during pervaporation, this approach is mathematically simple and is thermodynamically completely equivalent to the physical process. The evaporation step from the feed hquid to the saturated vapor phase produces a separation, which can be defined (eq. 13) as the ratio of... [Pg.86]

Air Backflush A configuration unique to microfiltration feeds the process stream on the shell side of a capillaiw module with the permeate exiting the tube side. The device is rim as an intermittent deadend filter. Eveiw few minutes, the permeate side is pressurized with air. First displacing the liquid permeate, a blast of air pushed back-... [Pg.2045]

Membrane System Design Features For the rate process of permeation to occur, there must be a driving force. For gas separations, that force is partial pressure (or fugacity). Since the ratio of the component fluxes determines the separation, the partial pressure of each component at each point is important. There are three ways of driving the process Either high partial pressure on the feed side (achieved by high total pressure), or low partial pressure on the permeate side, which may be achieved either by vacuum or by introduc-... [Pg.2050]

Air is commonly run with tube-side feed. The permeate is run countercurrent with the separating sldn in contact with the permeate. (The feed gas is in contact with the macroporous back side of the membrane.) This configuration has proven to be superior, since the permeate-side mass-transfer problem is reduced to a minimum, and the feed-side mass-transfer problem is not limiting. [Pg.2050]

Partial Pressure Pinch An example of the hmitations of the partial pressure pinch is the dehumidification of air by membrane. While O9 is the fast gas in air separation, in this apphcation H9O is faster still. Special dehydration membranes exhibit a = 20,000. As gas passes down the membrane, the pai-dal pressure of H9O drops rapidly in the feed. Since the H9O in the permeate is diluted only by the O9 and N9 permeating simultaneously, p oo rises rapidly in the permeate. Soon there is no driving force. The commercial solution is to take some of the diy air product and introduce it into the permeate side as a countercurrent sweep gas, to dilute the permeate and lower the H9O partial pressure. It is in effect the introduction of a leak into the membrane, but it is a controlled leak and it is introduced at the optimum position. [Pg.2050]

Modules Eveiy module design used in other membrane operations has been tried in peivaporation. One unique requirement is for low hydraulic resistance on the permeate side, since permeate pressure is veiy low (O.I-I Pa). The rule for near-vacuum operation is the bigger the channel, the better the transport. Another unique need is for neat input. The heat of evaporation comes from the liquid, and intermediate heating is usually necessary. Of course economy is always a factor. Plate-and-frame construc tion was the first to be used in large installations, and it continues to be quite important. Some smaller plants use spiral-wound modules, and some membranes can be made as capiUaiy bundles. The capillaiy device with the feed on... [Pg.2055]

The inlet flow on the permeate side wouldbe that of an inert gas, for instance, which continuouslysweepsthelowersideofthemembraneandclearsthepermeate.Ifthe flowis... [Pg.276]

Peivaporation is a relatively new process that has elements in common with reverse osmosis and gas separation. In peivaporation, a liquid mixture contacts one side of a membrane, and the driving force for the process is low vapour pressure on the permeate side of the membrane generated by cooling and condensing the permeate vapour. The attraction of peivaporation is that the separation obtained is proportional to the rate of permeation of the components of the liquid mixture through the selective membrane. Therefore, peivaporation offers the possibility of separating closely boiling mixtures or azeotropes that are difficult to separate by distillation... [Pg.355]

Permeate-side pressure drop High Moderate Moderate Low Low... [Pg.374]

Backflushing is another way of cleaning heavily fouled membranes. During back flushing a slight overpressure is applied to the permeate side of the membrane forcing solution from the permeate side to the feed side of the membrane. The flow of solution lifts deposited materials from the surface. Typical back flushing pressures are 5-15 psi [48]. [Pg.116]

We have been studying the novel process for CO2 separation named membrane/absorption hybrid method. The advantages of this process are that high gas permeance and selectivity were obtained. The concept of this process is shown in Fig. 1. Both feed gas and absorbent solution are supplied to the inside of hollow fibers. While Ae liquid flows upward inside the hollow fibers, absorbent solution absorbs CO2 selectively and it becomes a rich solution. Most of rich solution permeates the membrane to the permeate side maintained at reduced pressure, where it liberated CO2 to become a lean solution. Compared to a conventional gas absorption... [Pg.409]

The schematic diagram of the experimental setup is shown in Fig. 2 and the experimental conditions are shown in Table 2. Each gas was controlled its flow rate by a mass flow controller and supplied to the module at a pressure sli tly higher than the atmospheric pressure. Absorbent solution was suppUed to the module by a circulation pump. A small amount of absorbent solution, which did not permeate the membrane, overflowed and then it was introduced to the upper part of the permeate side. Permeation and returning liquid fell down to the reservoir and it was recycled to the feed side. The dry gas through condenser was discharged from the vacuum pump, and its flow rate was measured by a digital soap-film flow meter. The gas composition was determined by a gas chromatograph (Yanaco, GC-2800, column Porapak Q for CO2 and (N2+O2) analysis, and molecular sieve 5A for N2 and O2 analysis). The performance of the module was calculated by the same procedure reported in our previous paper [1]. [Pg.410]

Figure 5. Evolution of the average DP of (a) the sustrate and degradation products at the retentate side of the membrane and (b) the oligouronides at the permeate side of the membrane. Figure 5. Evolution of the average DP of (a) the sustrate and degradation products at the retentate side of the membrane and (b) the oligouronides at the permeate side of the membrane.
Membranes act as a semipermeable barrier between two phases to create a separation by controlling the rate of movement of species across the membrane. The separation can involve two gas (vapor) phases, two liquid phases or a vapor and a liquid phase. The feed mixture is separated into a retentate, which is the part of the feed that does not pass through the membrane, and a permeate, which is that part of the feed that passes through the membrane. The driving force for separation using a membrane is partial pressure in the case of a gas or vapor and concentration in the case of a liquid. Differences in partial pressure and concentration across the membrane are usually created by the imposition of a pressure differential across the membrane. However, driving force for liquid separations can be also created by the use of a solvent on the permeate side of the membrane to create a concentration difference, or an electrical field when the solute is ionic. [Pg.193]

Pervaporation. Pervaporation differs from the other membrane processes described so far in that the phase-state on one side of the membrane is different from that on the other side. The term pervaporation is a combination of the words permselective and evaporation. The feed to the membrane module is a mixture (e.g. ethanol-water mixture) at a pressure high enough to maintain it in the liquid phase. The liquid mixture is contacted with a dense membrane. The other side of the membrane is maintained at a pressure at or below the dew point of the permeate, thus maintaining it in the vapor phase. The permeate side is often held under vacuum conditions. Pervaporation is potentially useful when separating mixtures that form azeotropes (e.g. ethanol-water mixture). One of the ways to change the vapor-liquid equilibrium to overcome azeotropic behavior is to place a membrane between the vapor and liquid phases. Temperatures are restricted to below 100°C, and as with other liquid membrane processes, feed pretreatment and membrane cleaning are necessary. [Pg.199]

Feed and permeate sides of the membrane are both well mixed. [Pg.201]


See other pages where Permeate Side is mentioned: [Pg.85]    [Pg.86]    [Pg.146]    [Pg.2027]    [Pg.2048]    [Pg.2050]    [Pg.2053]    [Pg.275]    [Pg.1265]    [Pg.1266]    [Pg.780]    [Pg.409]    [Pg.411]    [Pg.411]    [Pg.817]    [Pg.988]    [Pg.52]    [Pg.58]    [Pg.61]    [Pg.63]    [Pg.194]    [Pg.202]    [Pg.301]    [Pg.304]    [Pg.76]   


SEARCH



Feed compression permeate side

Permeate side, membrane extraction

Permeate-side Conditions

Permeate-side concentration

Permeate-side concentration polarization

Permeated-side flow

Suction at the Permeate Side

© 2024 chempedia.info