Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester resins properties

Cumene (isopropylbenzene, isopropylben-zol, cumol) n. C6H5CH(CH3)2. A volatile liquid in the alkyl-aromatic family of hydrocarbons. It is used as a solvent and intermediate for the production of phenol, acetone, and a-methyl styrene and as a catalyst for acrylic and polyester resins. Properties bp, 153°C sp gr, 0.862/20°C refractive index, 1.506. Known also as isopropyl benzene (See image). [Pg.247]

Chem. Descrip. Silicone-ffee polymeric sol n. with 50% It. aromatic naphtha, 29% 1-methoxy-2-propanol acetate, 5% Stoddard, 4% isobutanol Uses Defoamer, air release agent for unsat. polyester resins Properties YIsh. cl. Iiq., min. spirit-like odor insol. in water sp.gr. 0.90 dens. 7.51 Ib/gal vapor pressure 4 mm Hg (20 C) b.p. 107-196 C flash pt. (Seta CC) 37 C ref. index 1.465 12% NV... [Pg.1353]

Uses. Neopentyl glycol is used extensively as a chemical intermediate in the manufacture of polyester resins (see Alkyd resins), polyurethane polyols (see Urethane polymers), synthetic lubricants, polymeric plasticizers (qv), and other polymers. It imparts a combination of desirable properties to properly formulated esterification products, including low color, good weathering and chemical resistance, and improved thermal and hydrolytic stabiUty. [Pg.372]

Uses. About 35% of the isophthahc acid is used to prepare unsaturated polyester resins. These are condensation products of isophthahc acid, an unsaturated dibasic acid, most likely maleic anhydride, and a glycol such as propylene glycol. The polymer is dissolved in an inhibited vinyl monomer, usually styrene with a quinone inhibitor. When this viscous hquid is treated with a catalyst, heat or free-radical initiation causes cross-linking and sohdification. A range of properties is possible depending on the reactants used and their ratios (97). [Pg.494]

Other minor raw materials are used for specific needs. Eumaric acid [110-17-8] the geometric isomer of maleic acid, is selected to maximize thermal or corrosion performance and is the sole acid esterified with bisphenol A diol derivatives to obtain optimum polymer performance. CycloaUphatics such as hydrogenated bisphenol A (HBPA) and cyclohexanedimethanol (CHDM) are used in selective formulations for electrical apphcations. TetrahydrophthaUc anhydride [85-43-8] (THPA) can be used to improve resiUence and impart useful air-drying properties to polyester resins intended for coating or lining apphcations. [Pg.313]

Dicylopentadiene Resins. Dicyclopentadiene (DCPD) can be used as a reactive component in polyester resins in two distinct reactions with maleic anhydride (7). The addition reaction of maleic anhydride in the presence of an equivalent of water produces a dicyclopentadiene acid maleate that can condense with ethylene or diethylene glycol to form low molecular weight, highly reactive resins. These resins, introduced commercially in 1980, have largely displaced OfXv o-phthahc resins in marine apphcations because of beneficial shrinkage properties that reduce surface profile. The inherent low viscosity of these polymers also allows for the use of high levels of fillers, such as alumina tfihydrate, to extend the resin-enhancing, fiame-retardant properties for apphcation in bathtub products (Table 4). [Pg.316]

Flame-Retardant Resins. Flame-retardant resins are formulated to conform to fire safety specifications developed for constmction as well as marine and electrical appHcations. Resins produced from halogenated intermediates (Table 5) are usually processed at lower temperatures (180°C) to prevent excessive discoloration. Dibromoneopentyl glycol [3296-90-0] (DBNPG) also requires glass-lined equipment due to its corrosive nature. Tetrabromophthahc anhydride (TBPA) and chlorendic anhydride (8) are formulated with ethylene glycols to maximize fiame-retardant properties reaction cycle times are about 12 h. Resins are also produced commercially by the in situ bromination of polyester resins derived from tetrahydrophthahc anhydride... [Pg.317]

Mechanical Properties. The performance of various polyester resin compositions can be distinguished by comparing the mechanical properties of thin castings (3 mm) of the neat resin defined in ASTM testing procedures (15). This technique is used widely to characterize subtle changes in flexural, tensile, and compressive properties that are generally overshadowed in highly filled or reinforced laminates. [Pg.320]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

SiHcone resins provide coatings having outstanding heat resistance and exterior durabiHty. The cost is relatively high but for specialized appHcations these resins are important binders (64). Silicone-modified acryHc and polyester resins provide binders having intermediate durabiHty properties and cost. Fluorinated polymers also exhibit outstanding durabiHty properties. High cost, however, limits appHcabiHty. [Pg.341]

Vinyl ester resins generally offer mechanical properties superior to those of polyester matrices but at an increased cost. Vinyl esters are chemically similar to epoxy resins but are manufactured via a cold-curing process similar to that used in the manufacture of polyester resins. Vinyl esters offer superior resistance to water and chemical attack and are used in such appHcations as underground pipes, tank liners, and storage tanks (see Vinyl polymers). [Pg.7]

Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

Unsaturated polyester resins predominate among fiber-reinforced composite matrices for several reasons. A wide variety of polyesters is available and the composites fabricator must choose the best for a particular appHcation. The choice involves evaluation of fabrication techniques, temperatures at which the resin is to be handled, cure time and temperature desked, and requked cured properties (see Polyesters, unsaturated). [Pg.18]

Ease of cure, easy removal of parts from mold surfaces, and wide availabiHty have made polyesters the first choice for many fiber-reinforced composite molders. Sheet mol ding compound, filament winding, hand lay-up, spray up, and pultmsion are all weU adapted to the use of polyesters. Choosing the best polyester resin and processing technique is often a challenge. The polyester must be a type that is weU adapted to the processing method and must have the final mechanical properties requked by the part appHcation. Table 1 Hsts the deskable properties for a number of fiber-reinforced composite fabrication methods. [Pg.18]

Table 6. Properties of Aromatic—Aliphatic Polyester Resins ... Table 6. Properties of Aromatic—Aliphatic Polyester Resins ...
Polyester carbonate resins are made by the interfacial process described for standard PC resins. The phthalate units are introduced by reaction of the appropriate phthaloyl dichlorides concurrent with the phosgenation. At present, Bayer, GE, and Miles produce polyester carbonate resins (47) sales volume is low, probably ca 100 t/yr. Polyester carbonates are used primarily in appHcations requiring 5—25°C higher heat-deflection temperature and better hydrolytic performance than are provided by standard PC resins. Properties are given in Table 9. [Pg.270]

This is also known as Bulk Moulding Compound (BMC). It is blended through a mix of unsaturated polyester resin, crosslinking monomer, catalyst, mineral fillers and short-length fibrous reinforcement materials such as chopped glass fibre, usually in lengths of 6-25 mm. They are all mixed in different proportions to obtain the required electromechanical properties. The mix is processed and cured for a specific time, under a prescribed pressure and temperature, to obtain the DMC. [Pg.369]

These transformers may be PVC taped, thermoplastic (polypropylene) moulded, fibreglass taped, polyester resin cast or epoxy resin cast depending upon the system voltage and the surroundings. HT indoor transformers, for instance, are generally polyester or epoxy resin cast, and are economical with good dielectric properties. They are resistant to humid, chemically contaminated and hazardous areas. Outdoor HT transformers, how-ever. may be epoxy... [Pg.457]

The applications of the unsaturated polyester resins were increased in the late 1960s by the introduction of water-extended polyesters. In these materials water is dispersed into the resin in very tiny droplets (ca 2-5 p.m diameter). Up to 90% of the system can consist of water but more commonly about equal parts of resin and water are used. The water component has two basic virtues in this system it is very cheap and because of its high specific heat it is a good heat sink for moderating cure exotherms and also giving good heat shielding properties of interest in ablation studies. [Pg.708]

Polyester resins, reinforced with glass fibers, are used widely in the construction of process equipment. Some physical and mechanical properties are presented in Table 3.48. Table 3.49 lists various materials used as filler and the properties they impart to different plastics. [Pg.120]

Nowadays the major thermosetting resins used in conjunction with glass fibre reinforcement are unsaturated polyester resins and to a lesser extent epoxy resins. The most important advantages which these materials can offer are that they do not liberate volatiles during cross-linking and they can be moulded using low pressures at room temperature. Table 3.1 shows typical properties of fibre reinforced epoxy. [Pg.170]

A filament wound composite cylindrical pressure vessel has a diameter of 1200 mm and a wall thickness of 3 mm. It is made up of 10 plies of continuous glass fibres in a polyester resin. The anangement of the plies is [O3/6O/ — 60],. Calculate the axial and hoop strain in the cylinder when an internal pressure of 3 MN/m is applied. The properties of the individual plies are... [Pg.242]

The surface energy of fibers is closely related to the hydrophilicity of the fiber [38]. Some investigations are concerned with methods to decrease hydrophilicity. The modification, of wood cellulose fibers with stearic acid [43] hydrophobizes those fibers and improves their dispersion in polypropylene. As can be observed in jute-reinforced unsaturated polyester resin composites, treatment with polyvinylacetate increases the mechanical properties [24] and moisture repellency. [Pg.796]

Polyurethane mortar flooring systems based on somewhat similar technology to this special polyester system have also been used in chemical plants and have given excellent service. The basic urethane polymer is more elastomeric than either epoxy or polyester resins and, as such, is reported to have excellent thermal properties up... [Pg.106]

The highest mechanical strengths are usually obtained when the fibre is used in fine fabric form but for many purposes the fibres may be used in mat form, particularly glass fibre. The chemical properties of the laminates are largely determined by the nature of the polymer but capillary attraction along the fibre-resin interface can occur when some of these interfaces are exposed at a laminate surface. In such circumstances the resistance of both reinforcement and matrix must be considered when assessing the suitability of a laminate for use in chemical plant. Glass fibres are most commonly used for chemical plant, in conjunction with phenolic resins, and the latter with furane, epoxide and, sometimes, polyester resins. [Pg.921]


See other pages where Polyester resins properties is mentioned: [Pg.130]    [Pg.130]    [Pg.247]    [Pg.470]    [Pg.354]    [Pg.368]    [Pg.375]    [Pg.144]    [Pg.294]    [Pg.320]    [Pg.320]    [Pg.321]    [Pg.321]    [Pg.322]    [Pg.322]    [Pg.319]    [Pg.322]    [Pg.337]    [Pg.7]    [Pg.19]    [Pg.422]    [Pg.268]    [Pg.269]    [Pg.814]    [Pg.834]   
See also in sourсe #XX -- [ Pg.42 , Pg.538 ]

See also in sourсe #XX -- [ Pg.57 , Pg.69 , Pg.70 , Pg.77 ]




SEARCH



Polyester resins

Polyester resins resin

Resins, properties

© 2024 chempedia.info