Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial process

The terminal R groups can be aromatic or aliphatic. Typically, they are derivatives of monohydric phenoHc compounds including phenol and alkylated phenols, eg, /-butylphenol. In iaterfacial polymerization, bisphenol A and a monofunctional terminator are dissolved in aqueous caustic. Methylene chloride containing a phase-transfer catalyst is added. The two-phase system is stirred and phosgene is added. The bisphenol A salt reacts with the phosgene at the interface of the two solutions and the polymer "grows" into the methylene chloride. The sodium chloride by-product enters the aqueous phase. Chain length is controlled by the amount of monohydric terminator. The methylene chloride—polymer solution is separated from the aqueous brine-laden by-products. The facile separation of a pure polymer solution is the key to the interfacial process. The methylene chloride solvent is removed, and the polymer is isolated in the form of pellets, powder, or slurries. [Pg.270]

Polyester carbonate resins are made by the interfacial process described for standard PC resins. The phthalate units are introduced by reaction of the appropriate phthaloyl dichlorides concurrent with the phosgenation. At present, Bayer, GE, and Miles produce polyester carbonate resins (47) sales volume is low, probably ca 100 t/yr. Polyester carbonates are used primarily in appHcations requiring 5—25°C higher heat-deflection temperature and better hydrolytic performance than are provided by standard PC resins. Properties are given in Table 9. [Pg.270]

As mentioned earlier, adhesive bond formation is governed by interfacial processes occurring between the adhering surfaces. These interfacial processes, as summarized by Brown [13] include (1) van der Waals or other non-covalent interactions that form bonds across the interface (2) interdiffusion of polymer chains across the interface and coupling of the interfacial chains with the bulk polymer and (3) formation of primary chemical bonds between chains or molecules at or across the interface. [Pg.77]

Starting with the experimentally found form of the adhesion energy functional given by Gent and Petrich [116], Falsafi et al. [117] have proposed and used the following empirical form to further decouple the bulk and interfacial processes... [Pg.129]

Unsaturated polyesters (UPs), 4, 18, 19 from PET waste, 560-561 Unsaturated polyester/styrene resin, preparation and cure of, 101 Unsaturated polyester thermosetting resins, syntheses of, 101-103 Unstirred interfacial process, 155 U-Polymer, 77... [Pg.604]

On the basis of our theoretical considerations and preliminary experimental work, it is hoped that fast processes of charge carriers will become directly measurable in functioning photoelectrochemical cells, Typical semiconductor electrodes are not the only systems accessible to potential-dependent microwave transient measurements. This technique may also be applied to the interfacial processes of semimetals (metals with energy gaps) or thin oxide or sulfide layers on ordinary metal electrodes. [Pg.506]

Land/atmospheric interfacial processes which impact climate and biological activity on earth are illustrated in Figure 3. Emissions of carbon dioxide, methane, nitrogen dioxide, and chlorofluorocarbons (CFCs) have been linked to the transmission of solar radiation to the surface of the earth as well as to the transmission of terrestrial radiation to space. Should solar radiation be an internal process or an external driver of the hydrologic cycle, weather, and air surface temperatures Compounds of sulfur and nitrogen are associated with acidic precipitation and damage to vegetation, aquatic life, and physical structures. [Pg.11]

Tributsch H (1985) Interfacial processes involving strong electronic interactions in solar energy conversion and storage. J Photochem 29 89-113... [Pg.306]

SFG spectroscopy is an ideal technique to investigate the mechanism of interfacial processes at solid/liquid interfaces [5, 6, 10-16]. [Pg.72]

Conway BE, Tilak BV. 2002. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47 3571-3594. [Pg.337]

It is worthwhile mentioning that the interfacial potential created at the liquid-liquid interface is governed by single ionic or redox equilibrium only in the simple cases. The presence of various, often two, interfacial processes is a source of the steady-state potential, named also the mixed or the rest potential. Its value is situated between the two equilibrium potentials, near that one which corresponds to the higher exchange current... [Pg.30]

Catalysis at interfaces between two immiscible liquid media is a rather wide topic extensively studied in various fields such as organic synthesis, bioenergetics, and environmental chemistry. One of the most common catalytic processes discussed in the literature involves the transfer of a reactant from one phase to another assisted by ionic species referred to as phase-transfer catalyst (PTC). It is generally assumed that the reaction process proceeds via formation of an ion-pair complex between the reactant and the catalyst, allowing the former to transfer to the adjacent phase in order to carry out a reaction homogeneously [179]. However, detailed comparisons between interfacial processes taking place at externally biased and open-circuit junctions have produced new insights into the role of PTC [86,180]. [Pg.231]

Hitherto, there are primarily three ways in which an amperometric electrode can be used to simultaneously induce and monitor interfacial processes. These are illustrated schematically in Fig. 2 for the most general case where diffusion may occur in both of the liquid phases, which comprise the interface of interest. [Pg.291]

FIG. 2 Principal methods for inducing and monitoring interfacial processes with SECM (a) feedback mode, (b) induced transfer, and (c) double potential step chronoamperometry. [Pg.292]

The success of SECM methodologies in providing quantitative information on the kinetics of interfacial processes relies on the availability of accurate theoretical models for mass transport and coupled kinetics, to allow the analysis of experimental data. The geometry of SECM is not conducive to exact analytical solution and hence a number of semiana-lytical [40,41], and numerical [8,10,42 46], methods have been introduced for a variety of problems. [Pg.296]

The effect on the current-time behavior of varying Kg while keeping the kinetics of the interfacial process high and nonlimiting is shown in Fig. 11, for a typical tip-interface distance log(T) = —0.5. The general trends in Fig. 11 can be explained as follows. At short times, the diffusion field at the UME tip is not of sufficient size to intercept the interface, and there is thus no perturbation of the interfacial equilibrium. In this time regime,... [Pg.307]

For small K, i.e., K = 0.5 in Fig. 17, the response of the equilibrium to the depletion of species Red] in phase 1 is slow compared to diffusional mass transport, and consequently the current-time response and mass transport characteristics are close to those predicted for hindered diffusion with an inert interface. As K is increased, the interfacial process responds more rapidly to the electrochemical perturbation in phase 1. The transfer of the target species across the interface generates an enhanced flux to the UME, causing... [Pg.311]

In initial ET rate measurements, both the NB and aqueous phases contained 0.1 M TEAP, enabling measurements to be made with a constant Galvani potential difference across the liquid junction. In these early studies, the concentration of Fc used in the organic phase (phase 2) was at least 50 times the concentration of the electroactive mediator in the aqueous phase which contained the probe UME (phase 1). This ensured that the interfacial process was not limited by mass transport in the organic phase, and that the simple constant-composition model, described briefly in Section IV, could be used. [Pg.314]

The majority of RDC studies have concentrated on the measurement of solute transfer resistances, in particular, focusing on their relevance as model systems for drug transfer across skin [14,39-41]. In these studies, isopropyl myristate is commonly used as a solvent, since it is considered to serve as a model compound for skin lipids. However, it has since been reported that the true interfacial kinetics cannot be resolved with the RDC due to the severe mass transport limitations inherent in the technique [15]. The RDC has also been used to study more complicated interfacial processes such as kinetics in a microemulsion system [42], where one of the compartments contains an emulsion. [Pg.340]

A comprehensive study of the complex interfacial processes involved in the solvent extraction of cupric ion by oxime ligands represents one of the most detailed and successful studies carried out with the RDC [37,38]. Recently, the technique was also used to study the transfer of tetrabutylammonium cations [43] and the kinetics of partitioning of compounds between octanol and water [44]. In the latter study, Fisk and coworkers investigated the rates of partitioning of 23 compounds from octanol to an aqueous phase. The RDC arrangement used most frequently in this work is of the o/o/w type. So according to Eq. (15), and can be calculated from the gradient and intercept of... [Pg.340]

Stirred suspensions of droplets have proven to be a popular approach for studying the kinetics of liquid-liquid reactions [54-57]. The basic principle is that one liquid phase takes the form of droplets in the other phase when two immiscible liquids are dispersed. The droplet size can be controlled by changing the agitator speed. For droplets with a diameter < 0.15 cm the inside of the drop is essentially stagnant [54], so that mass transfer to the inside surface of the droplet occurs only by diffusion. In many cases, this technique can lack the necessary control over both the interfacial area and the transport step for determination of fundamental interfacial processes [3], but is still of some value as it reproduces conditions in industrial reactors. [Pg.343]

As Cu11 is substitution-labile,154 the rates of mass transfer are dependent on interfacial processes, which have been shown155 to be fast for both loading and stripping in conventional contactors, but possibly too slow in stripping for the industrial application of columns. [Pg.779]

The uia of a nuaerical analysis of voltaaaograas with a praciaa deconvolution technique of the adeorption state (23.24) and the coaparison of resulting data with hard sphere aodels of the stepped surfaces in nuaber of cases allows an understanding of the interfacial processes at the atoaic level of the working surface, in the presence of the electrolyte. [Pg.215]

For a given mass transfer problem, the above conservation equations must be complemented with the applicable initial and boundary conditions. The problem of finding the mathematical function that represents the behaviour of the system (defined by the conservation equations and the appropriate set of initial and boundary conditions), is known as a boundary value problem . The boundary conditions specifically depend on the nature of the physicochemical processes in which the considered component is involved. Various classes of boundary conditions, resulting from various types of interfacial processes, will appear in the remainder of this chapter and Chapters 4 and 10. Here, we will discuss some simple boundary conditions using examples of the diffusion of a certain species taken up by an organism ... [Pg.124]

The finite kinetics of the adsorption/desorption steps at the interface have been extensively studied by Hudson and Morel [13,15]. A wealth of literature is available on dealing with such interfacial processes [94-96] and its inclusion in the biouptake model should be implemented when experimental evidence of its necessity arises. [Pg.193]

The above forms for the Lennard-Jones surface-water interaction potential have been used as models of hydrophobic surfaces such as pyrophyl1ite, graphite, or paraffin. If the intention of the study, however, is to understand interfacial processes at mineral surfaces representative of smectites or mica, explicit electrostatic interactions betweeen water molecules and localized charges at the surface become important. [Pg.25]


See other pages where Interfacial process is mentioned: [Pg.279]    [Pg.283]    [Pg.189]    [Pg.76]    [Pg.714]    [Pg.1404]    [Pg.156]    [Pg.601]    [Pg.280]    [Pg.14]    [Pg.191]    [Pg.290]    [Pg.293]    [Pg.300]    [Pg.314]    [Pg.332]    [Pg.480]    [Pg.139]    [Pg.166]    [Pg.75]    [Pg.3]    [Pg.249]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.301 , Pg.302 ]




SEARCH



Aging process, interfacial dynamics

Corrosion process interfacial potential

Electron interfacial, processes

Evaluation and Separation of Interfacial Processes

Experimental methods, interfacial processes

Experimental methods, interfacial processes interface study

Growth stresses and interfacial processes

Hydrogen ions in interfacial processe

Hydrogen ions in interfacial processes

Hydrogen ions in interfacial processes of montmorillonite

Hydrogen ions interfacial processe

Interfacial Electron Transfer Processes at Modified Semiconductor Surfaces

Interfacial electrochemical processes

Interfacial electrochemical processes molecular dynamics simulation

Interfacial electron transfer processes

Interfacial electron transfer, molecular electrochemical processes

Interfacial energy nucleation process

Interfacial microstructure and processes

Interfacial processes atomic percent

Interfacial processes cation-exchanged montmorillonites

Interfacial processes characterization

Interfacial processes charge/electron transfer

Interfacial processes complexation

Interfacial processes complexation agents, effect

Interfacial processes crystal structure

Interfacial processes electrocatalysis

Interfacial processes energy transfer

Interfacial processes exchange

Interfacial processes geological systems

Interfacial processes manipulation

Interfacial processes montmorillonite

Interfacial processes montmorillonites

Interfacial processes photoinduced

Interfacial processes polymer-modified electrodes

Interfacial processes prepared from

Interfacial processes selectivity coefficient

Interfacial processes synthesis

Interfacial properties, mineral processing

Interfacial transfer processes

Interfacial wear processes

Kinetics of interfacial processes

Mineral processing interactions interfacial

Near Interfacial Processes

Phosphonium Halides as Processing Additives and Interfacial Modifiers

Polycarbonate interfacial production process

Quantitative treatment, interfacial processes

Rate Measures for Interfacial Processes

Reactive processing interfacial cross-linking

Separation of interfacial processes

Step polymerization interfacial process

Subject interfacial processes

Transformations Initiated by Interfacial Processes of Montmorillonite

Transformations initiated interfacial processes

© 2024 chempedia.info