Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Produced water

When water is produced along with oil, the separation of water from oil invariably leaves some water in the oil. The current oil-in-water emission limit into the sea is commonly 40 ppm. Oily water disposal occurs on processing platforms, some drilling platforms, and at oil terminals. The quality of water disposed from terminals remains an area of scrutiny, especially since the terminals are often near to local habitation and leisure resorts. If the engineer can find a means of reducing the produced water at source (e.g. water shut-off or reinjection of produced water into reservoirs) then the surface handling problem is much reduced. [Pg.73]

Produced water has to be separated from oil for two main reasons, firstly because the customer is buying oil not water, and secondly to minimise costs associated with evacuation (e.g., volume pumped, corrosion protection for pipelines). A water content of less than 0.5% is a typical specification for sales crude. [Pg.246]

Water may be injected into the reservoir to supplement oil recovery or to dispose of produced water. In some cases these options may be complementary. Water will generally need to be treated before it can be injected into a reservoir, whether it is cleaned sea water or produced water. Once treated it is injected into the reservoir, often at high pressures. Therefore to design a process flow scheme for water injection one needs specifications of the source water and injected water. [Pg.257]

Possible water sources for injection are sea water, fresh surface water, produced water or aquifer water (not from the producing reservoir). Once it has been established that there is enough water to meet demand (not an issue in the case of sea water), it is important to determine what type of treatment is required to make the water suitable for injection. This is investigated by performing laboratory tests on representative water samples. [Pg.257]

Keywords production decline, economic decline, infill drilling, bypassed oil, attic/cellar oil, production potential, coiled tubing, formation damage, cross-flow, side-track, enhanced oil recovery (EOR), steam injection, in-situ combustion, water alternating gas (WAG), debottlenecking, produced water treatment, well intervention, intermittent production, satellite development, host facility, extended reach development, extended reach drilling. [Pg.351]

If extra treatment capacity is not cost effective another option may be to handle the produced water differently. The water treatment process is defined by the production stream and disposal specifications. If disposal specifications can be relaxed less treatment will be required or, a larger capacity of water could be treated. It is unlikely that environmental regulators will tolerate an increase in oil content, but if much of the... [Pg.360]

Injection of produced water is not a new idea, but the technique has met resistance due to concerns about reservoir impairment (solids or oil in the water may block the reservoir pores and reducing permeability). However, as a field produces at increasingly high water cuts, the potential savings through reduced treatment costs compared with the consequences of impairment become more attractive. [Pg.361]

One of the most readily observed reactions in chemistry is the familiar production of bubbles of a colourless gas when certain metals (for example, iron, zinc) react with dilute acids. Cavendish investigated these reactions rather more than 200 years ago, and found the gas evolved to be the same in each case the gas, later named hydrogen, was much lighter than air and when burned in air produced water. [Pg.111]

Polylacrylic Acid) and Poly(methacrylic Acid). Glacial acrylic acid and glacial meth-acrylic acid can be polymerized to produce water-soluble polymers having the following structures ... [Pg.1013]

The deterrnination of hydrogen content of an organic compound consists of complete combustion of a known quantity of the material to produce water and carbon dioxide, and deterrnination of the amount of water. The amount of hydrogen present in the initial material is calculated from the amount of water produced. This technique can be performed on macro (0.1—0.2 g), micro (2—10 mg), or submicro (0.02—0.2 mg) scale. Micro deterrninations are the most common. There are many variations of the method of combustion and deterrnination of water (221,222). The oldest and probably most reUable technique for water deterrnination is a gravimetric one where the water is absorbed onto a desiccant, such as magnesium perchlorate. In the macro technique, which is the most accurate, hydrogen content of a compound can be routinely deterrnined to within 0.02%. Instmmental methods, such as gas chromatography (qv) (223) and mass spectrometry (qv) (224), can also be used to determine water of combustion. [Pg.430]

Water Treatment. The two primary appHcations in water treatment are softening and deionization. Other important but less frequendy used appHcations include dealkalization, softening of produced water, desilicizing, and nitrate removal. [Pg.385]

A problem common to produced water appHcations is the tendency for oil fouling of the resin. If weak acid or chelate resins are used, a two-step regeneration process is required which uses acid to remove calcium and magnesium from the resin, foUowed by a dilute NaOH solution to convert the resin to the sodium form. [Pg.386]

In an od-wet rock, water resides in the larger pores, oil exists in the smaller pores or as a film on flow channel surfaces. Injected water preferentially flows through the larger pores and only slowly invades the smaller flow channels resulting in a higher produced water oil ratio and a lower oil production rate than in the water-wet case. [Pg.188]

Both in situ cross-linking of partially hydroly2ed polyacrylamides (69) and injection of quaternary ammonium salt polymers having long hydrophilic side chains (70) have been used to reduce the permeabiUty of water-producing 2ones adjacent to production wells. This permeabiUty reduction decreases the produced water oil ratio as does injection of polyacrylamide in high hardness brine to reduce permeabiUty (71). [Pg.191]

Bisamides. Methylenebisamides are prepared by the reaction of the primary fatty amide and formaldehyde in the presence of an acid catalyst. AijAT-Methylenebisoleamide has been made via this route without the use of refluxing solvent (55). Polymethylenebisamides can be made from fatty acid, esters, or acid haUdes with diamines while producing water, alcohol, or mineral acid by-products. Eatty acids and diamines, typically ethylenediamine, have been condensed in the presence of NaBH and NaH2P02 to yield bisamides (56). When stearic acid, ethylenediamine, and methyl acetate react for 6 h at... [Pg.184]

Centrifugal casting is used to produce water softener tanks and pipe by saturating a reinforcement with thermosetting resin within a mold that is then rotated at high speed to consoHdate the laminate before curing. [Pg.97]

Distillation processes typically reduce the IDS concentration to levels weU below the required specifications. Because the product water from the two processes is combined, the RO process can produce water at higher I DS concentrations and stiU meet the potable water specifications. In addition, the power produced from the MSF process can be used in the RO process, cutting energy costs. [Pg.154]

Demineraliza tion of water is the removal of essentially all inorganic salts by ion exchange. In this process, strong acid cation resin in the hydrogen form converts dissolved salts into their corresponding acids, and strong base anion resin in the hydroxide form removes these acids. Demineralization produces water similar in quaHty to distillation at a lower cost for most fresh waters. [Pg.260]

Electrodialysis Reversal. Electro dialysis reversal processes operate on the same principles as ED however, EDR operation reverses system polarity (typically three to four times per hour). This reversal stops the buildup of concentrated solutions on the membrane and thereby reduces the accumulation of inorganic and organic deposition on the membrane surface. EDR systems are similar to ED systems, designed with adequate chamber area to collect both product water and brine. EDR produces water of the same purity as ED. [Pg.262]

Color can be removed effectively and economically with either alum or ferric sulfate at pH values of 5—6 and 3—4, respectively. The reaction is stoichiometric and is a specific reaction of the coagulant with the color to form an insoluble compound (17). The dosage required may be as high as 100—150 mg/L (380—570 mg/gal). Raw-water colors may be as high as 450—500 units on the APHA color scale. The secondary MCL (maximum contaminant level) for color in the finished water is 15 units, although most municipal treatment plants produce water that seldom exceeds 5 units. [Pg.278]

The overall reaction neither consumes nor produces water. As in the case of mercury cells these cells have very high capacity. [Pg.530]

Properties. HydroxyethjIceUulose [9004-62-0] (HEC), is a nonionic polymer. Low hydroxyethyl substitutions (MS = 0.05-0.5) yield products that are soluble only in aqueous alkali. Higher substitutions (MS > 1.5) produce water-soluble HEC. The bulk of commercial HEC falls into the latter category. Water-soluble HEC is widely used because of its broad compatibiUty with cations and the lack of a solution gel or precipitation point in water up to the boiling point. The MS of commercial HEC varies from about 1.8 to 3.5. The products are soluble in hot and cold water but insoluble in hydrocarbon solvents. HEC swells or becomes pardy to mosdy soluble in select polar solvents, usually those that are miscible with water. [Pg.274]

To reduce the amount of dust produced, water can be added to the abrasive from a circular water sprayer around the no22le. Chemical corrosion inhibitors must be dissolved in the water to prevent flash msting of the steel. Newer methods to reduce dust include the use of ice, soHd carbon dioxide (dry ice), or plastic beads as abrasives. Blasting with dry ice is inexpensive and effective, but the accumulation of carbon dioxide must be avoided in enclosures. Plastic beads are inexpensive, but the cutting efficiency is low and paint removal is slow the beads can be cleaned of paint particles and reused. [Pg.364]


See other pages where Produced water is mentioned: [Pg.236]    [Pg.257]    [Pg.360]    [Pg.360]    [Pg.360]    [Pg.373]    [Pg.271]    [Pg.394]    [Pg.386]    [Pg.532]    [Pg.323]    [Pg.225]    [Pg.17]    [Pg.293]    [Pg.487]    [Pg.397]    [Pg.341]    [Pg.345]    [Pg.375]    [Pg.154]    [Pg.154]    [Pg.155]    [Pg.118]    [Pg.489]    [Pg.202]    [Pg.246]    [Pg.566]    [Pg.88]   
See also in sourсe #XX -- [ Pg.645 , Pg.646 , Pg.654 ]

See also in sourсe #XX -- [ Pg.285 , Pg.293 , Pg.309 ]

See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Base A substance that produces hydroxide water

Characteristics of Produced Water

Corrosion tests produced water systems

Dissolved solids, produced water

Dissolved solids, produced water treatment

Dissolved solids, produced water types

Double displacement reaction water producing

Electrolysis of Water to Produce Hydrogen

Heavy water producing

Hydrocyclones, produced water

Hydrocyclones, produced water treatment

Polymer flooding produced water from

Produced water treating systems

Produced water treatment

Produced water treatment applications

Produced water treatment bacteria

Produced water treatment characteristics

Produced water treatment coalescence

Produced water treatment coalescers

Produced water treatment considerations

Produced water treatment definition

Produced water treatment design

Produced water treatment dispersion

Produced water treatment disposal standards

Produced water treatment dissolved gases

Produced water treatment equations

Produced water treatment filters

Produced water treatment flotation

Produced water treatment flotation units

Produced water treatment gravity separation

Produced water treatment guidelines

Produced water treatment mechanical induced

Produced water treatment method

Produced water treatment operating principles

Produced water treatment operation principle

Produced water treatment performance

Produced water treatment precipitated solids

Produced water treatment retention time

Produced water treatment scale inhibitors

Produced water treatment scale removal

Produced water treatment schematics

Produced water treatment separator

Produced water treatment sizing

Produced water treatment solids

Produced water treatment toxicants

Produced water treatment units

Produced water treatment vessels

Producing Hydrogen from Water, Natural Gas, and Green Plants

Reaction between glycerol and three fatty acids to produce a triglyceride (fat) plus water

Scales, produced water treatment

Treatment of Waters Produced by Oil Wells

Water beads produced

© 2024 chempedia.info