Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester resins poly-

The applications of this technique have been reviewed [68]. In addition to chemical reactions associated with thermal and oxidative decomposition, DSC can also be used to monitor the curing of thermosets (see Section 10.3). Examples are the polymerisation of unsaturated polyester resins, poly-addition of epoxy resins with curing agents, and isocyanates with polyols. [Pg.318]

DSC can be used to monitor the curing of thermosets. Examples are the polymerisation of unsatured polyester resins, poly-addition of epoxy resins with curing agents and isocyanates with polyols. [Pg.94]

BucknaU, C.B., Partridge, I.K., and PhiDips, M.J. (1991) Morphology and properties of thermoset blends made from unsaturated polyester resin, poly(vinyl acetate) and styrene. Polymer, 32 (5), 786-790. [Pg.154]

Uses Deaerating agent for med. and high polar coating systems, esp. PU paints, high solids alkyds, ES spray tems, and urethane-polyesters resinous/poly-... [Pg.1121]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Dry chlorine has a great affinity for absorbing moisture, and wet chlorine is extremely corrosive, attacking most common materials except HasteUoy C, titanium, and tantalum. These metals are protected from attack by the acids formed by chlorine hydrolysis because of surface oxide films on the metal. Tantalum is the preferred constmction material for service with wet and dry chlorine. Wet chlorine gas is handled under pressure using fiberglass-reinforced plastics. Rubber-lined steel is suitable for wet chlorine gas handling up to 100°C. At low pressures and low temperatures PVC, chlorinated PVC, and reinforced polyester resins are also used. Polytetrafluoroethylene (PTFE), poly(vinyhdene fluoride) (PVDE), and... [Pg.510]

Polyester sheet products may be produced from amorphous poly(ethylene terephalate) (PET) or partiaHy crystallized PET. Acid-modified (PETA) and glycol modified (PETG) resins are used to make ultraclear sheet for packaging. Poly(butylene terephthalate) (PBT) has also been used in sheet form. Liquid-crystal polyester resins are recent entries into the market for specialty sheet. They exhibit great strength, dimensional stabHity, and inertness at temperatures above 250°C (see Polyesters,thermoplastic). [Pg.377]

Diacyl peroxides are used in a broad spectmm of apphcations, including curing of unsaturated polyester resin compositions, cross-linking of elastomers, production of poly(vinyl chloride), polystyrene, and polyacrjlates, and in many nonpolymeric addition reactions. [Pg.223]

Poly(methyl methacrylate) and poly(vinyl acetate) precipitate from the resin solution as it cures. This mechanism offsets the contraction in volume as the polyester resin cross-links, resulting in a nonshrinking thermoset. Other polymer additives such as poly(butylene adipate) provide similar shrinkage... [Pg.322]

Reactive (unsaturated) epoxy resins (qv) are reaction products of multiple glycidyl ethers of phenoHc base polymer substrates with methacrylic, acryhc, or fumaric acids. Reactive (unsaturated) polyester resins are reaction products of glycols and diacids (aromatic, aUphatic, unsaturated) esterified with acryhc or methacrylic acids (see POLYESTERS,unsaturated). Reactive polyether resins are typically poly(ethylene glycol (600) dimethacrylate) or poly(ethylene glycol (400) diacrylate) (see PoLYETPiERs). [Pg.428]

Most polyesters (qv) are based on phthalates. They are referred to as aromatic-aHphatic or aromatic according to the copolymerized diol. Thus poly(ethylene terephthalate) [25038-59-9] (PET), poly(butyelene terephthalate) [24968-12-5] (PBT), and related polymers are termed aromatic-aHphatic polyester resins, whereas poly(bisphenol A phthalate)s are called aromatic polyester resins or polyarylates PET and PBT resins are the largest volume aromatic-aHphatic products. Other aromatic-aHphatic polyesters (65) include Eastman Kodak s Kodar resin, which is a PET resin modified with isophthalate and dimethylolcyclohexane. Polyarylate resins are lower volume specialty resins for high temperature (HDT) end uses (see HeaT-RESISTANT POLYAffiRS). [Pg.267]

Polyesters are eneountered in many forms. They are important as laminating resins, moulding compositions, fibres, films, surface coating resins, rubbers and plasticisers. The common factor in these widely different materials is that they all contain a number of ester linkages in the main chain. (There are also a number of polymers such as poly(vinyl acetate) which contain a number of ester groups in side chains but these are not generally considered within the term polyester resins.)... [Pg.694]

Low molecular weight liquid polyester resins are useful as plasticisers, particularly for PVC, where they are less volatile and have greater resistance to extraction by water than monomeric plasticisers. Examples of such plasticisers are polyfpropylene adipate) and poly(propylene sebacate). In some cases monobasic acids such as lauric acid are used to control the molecular weight. [Pg.742]

Properties and Other Characteristics of Several Polyester Resin Binders Used in Pyrotechnic Formulations , Rept No RDTR No 51, USNAD, Crane (1966) 13a) V.V. Korshak et al, Poly-... [Pg.814]

TABLE 2.11 Typical Properties of Unfilled Polyethylene terephthalate) (PET), Poly(trimethylene terephthalate) (PTT), and Poly(butylene terephthalate (PBT) Solid-State Polyester Resins... [Pg.46]

Polymer Recycling 3,No.3, 1997/98, p.173-80 UNSATURATED POLYESTER RESINS FROM POLY(ETHYLENE TEREPHTHALATE) WASTE SYNTHESIS AND CHARACTERISATION Abdel-Azim AA Mekewi M A Gouda S R Egyptian Petroleum Research Institute Ain Shams,University Egypt,Military Technical College... [Pg.53]

Polymers for Advanced Technologies 6, No. 11, Nov. 1995, p.688-92 MAKING POLYMER CONCRETE AND POLYMER MORTAR USING SYNTHESISED UNSATURATED POLYESTER RESINS FROM POLY(ETHYLENE TEREPHTHALATE) WASTE Abdel-Azim A AA Attia IA Egyptian Petroleum Research Institute Carro,Ain Shams University... [Pg.82]

Superior Environmental Products, Inc. introduced a product based on liquid poly sulfide containing 40% of a surface-modified scrap tire mbber. The product, ER-IOOR, is a coating that can temporarily contain chemical, oil, and gasoline spills. Rodriguez [97] reported that an unsaturated polyester resin containing silane-treated CGR showed better mechanical properties than that containing untreated CGR. [Pg.1055]

Polyester resins can be highly beneficial as additives to other size polymers, although a great deal of care and expertise is required in formulation [192]. Viscosity, for example, is an important factor in the warp sizing process. The viscosity of some sizes, such as poly(vinyl alcohol), is significantly affected by temperature fluctuations. The addition of a polyester resin tends to minimise such changes in viscosity. Surface tension is another important parameter... [Pg.107]

Another specialty area is coil coating, which involves coating metal coils by continuous operation. Modern roller systems afford speeds of up to 200 m/min. Most coils are made of cold-rolled and surface treated steel, aluminum, or alloys of the latter with manganese or magnesium. Coating systems are based on alkyd or acrylic resins, oil-free polyester, silicone-modified polyester or acrylic resin, poly(vinylidene fluoride), or poly(vinyl fluoride). Water-reducible systems, mainly based on acrylic resins, have been developed for aluminum as well as for steel coils [21-24], Drying is carried out by continuous operation in gas- or oil-heated multichamber ovens. [Pg.159]

It should be taken into account that all of the aspects described above are of a general nature and therefore more or less valid for any kind of industrially relevant polyester resin. Upon closer examination, the experiences gained with PET are particularly applicable to poly(butylene terephthalate) (PBT), poly(trimethylene terephthalate) (PTT) and polyethylene naphthalate) (PEN). These polymers have gained major industrial importance as a result of a number of different properties in comparison with PET. [Pg.487]

While depolymerizing poly(ethylene naphthalate) could be attractive on the small scale because of the high commercial price for the naphthalate moiety, even this candidate resin is in too little availability to permit economical depolymerization. Of polyesters, only poly(ethylene terephthalate) (PET) is available at sufficient quantities to make the commercial use of depolymerization potentially attractive. [Pg.566]

Low-profile additives are generally materials such as poly (vinyl acetate), polystyrene, polyethylene or polycarbonate. During the unsaturated polyester cure cycle, the low-profile additives separate into a second phase, which expand to counteract the shrinkage of the curing unsaturated polyester resin. Material development and the science of low-profile additives have helped create substantial markets for unsaturated polyesters. Their use in automotive markets, where Class A show room quality surfaces is a requirement, is an example of this. [Pg.707]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]


See other pages where Polyester resins poly- is mentioned: [Pg.378]    [Pg.361]    [Pg.363]    [Pg.323]    [Pg.294]    [Pg.320]    [Pg.322]    [Pg.162]    [Pg.422]    [Pg.416]    [Pg.834]    [Pg.629]    [Pg.19]    [Pg.59]    [Pg.196]    [Pg.286]    [Pg.541]    [Pg.716]    [Pg.143]    [Pg.201]    [Pg.361]    [Pg.363]    [Pg.294]   


SEARCH



Poly Polyester

Poly resins

Polyester resins

Polyester resins resin

© 2024 chempedia.info