Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-modified

Polyester sheet products may be produced from amorphous poly(ethylene terephalate) (PET) or partiaHy crystallized PET. Acid-modified (PETA) and glycol modified (PETG) resins are used to make ultraclear sheet for packaging. Poly(butylene terephthalate) (PBT) has also been used in sheet form. Liquid-crystal polyester resins are recent entries into the market for specialty sheet. They exhibit great strength, dimensional stabHity, and inertness at temperatures above 250°C (see Polyesters,thermoplastic). [Pg.377]

Acid modifiers have been used to a limited extent to reduce acid consumption in the H2SO4 alkylation process (27). Increased catalyst costs will encourage the further development and appHcation of such acid modification techniques in the future. In addition, the development of new technology, such as two-step alkylation, may be accelerated based on the incentive to reduce catalyst consumption and increase product octane (28). [Pg.47]

In industrial production of acid-modified starches, a 40% slurry of normal com starch or waxy maize starch is acidified with hydrochloric or sulfuric acid at 25—55°C. Reaction time is controlled by measuring loss of viscosity and may vary from 6 to 24 hs. For product reproducibiUty, it is necessary to strictly control the type of starch, its concentration, the type of acid and its concentration, the temperature, and time of reaction. Viscosity is plotted versus time, and when the desired amount of thinning is attained the mixture is neutralized with soda ash or dilute sodium hydroxide. The acid-modified starch is then filtered and dried. If the starch is washed with a nonaqueous solvent (89), gelling time is reduced, but such drying is seldom used. Acid treatment may be used in conjunction with preparation of starch ethers (90), cationic starches, or cross-linked starches. Acid treatment of 34 different rice starches has been reported (91), as well as acidic hydrolysis of wheat and com starches followed by hydroxypropylation for the purpose of preparing thin-hoiling and nongelling adhesives (92). [Pg.344]

Modified starches may be acid-modified, oxidized, or heat-treated. Acid-modified (thin-boiling) starches are used mainly in textiles as warp sizes and fabric finishes. Here they increase yam strength and abrasion resistance and improve weaving efficiency. Tbin-boiHng starches also have selected appHcations in paper and laundry starch preparations. [Pg.345]

Acid-modified starches are used in the manufacture of gum candies because they form hot concentrated pastes that form strong gels on cooling. ThermaUzed starches are used in foods to bind and carry flavors and colors. Sweetening agents (com symp, HFCS) are made from starch by enzymatic or acid treatment as previously noted. [Pg.346]

Poly(vinyl alcohol) is readily cross-linked with low molecular weight dialdehydes such as glutaraldehyde or glyoxal (163). Alkanol sulfonic acid and poly(vinyl alcohol) yield a sulfonic acid-modified product (164). [Pg.481]

Basic (Cationic) Dyes. The use of basic dyes is confined mainly to acryUc textile fibers, acetate, and as complementary dyes for acid-modified polyester fibers that accept this class of dyes. [Pg.372]

SORBENTS FOR CONCENTRATION OF Pd(II) NATURAL AND ACIDIC MODIFIED TRANSCARPATHIAN CLINOPTILOLITE... [Pg.255]

Blends based on polyolefins have been compatibilized by reactive extrusion where functionalized polyolefins are used to form copolymers that bridge the phases. Maleic anhydride modified polyolefins and acrylic acid modified polyolefins are the commonly used modified polymers used as the compatibilizer in polyolefin-polyamide systems. The chemical reaction involved in the formation of block copolymers by the reaction of the amine end group on nylon and anhydride groups or carboxylic groups on modified polyolefins is shown in Scheme 1. [Pg.668]

The kinetics of the reactive compatibilization of nylon-6-PP by acrylic acid modified PP was investigated by Dagli et al. [47]. The compatibilization reaction in this system involved the reaction between the acid group of acrylic acid modified PP and the amine group of nylon-6. A typical intensive batch mixer torque (t) vs time (t) trace for a ternary blend showing an increase in mixing torque upon the addition of PP-g-AA to a binary PP-NBR (85 7.5) blend is shown in Fig. 3. The kinetic... [Pg.670]

Reactive compatibilization of engineering thermoplastic PET with PP through functionalization has been reported by Xanthos et al. [57]. Acrylic acid modified PP was used for compatibilization. Additives such as magnesium acetate and p-toluene sulfonic acid were evaluated as the catalyst for the potential interchange or esterification reaction that could occur in the melt. The blend characterization through scanning electron microscopy, IR spectroscopy, differential scanning calorimetry, and... [Pg.673]

Isophthalic acid, 60 Isophthalic-acid-modified PET, 530 Isophthaloyl chloride, 333... [Pg.587]

The urocanic-acid-modified chitosan showed good DNA binding abihty, high protection of DNA from nuclease attack, and low cytotoxicity. The transfection efficiency of chitosan into 293T cells was much enhanced after coup-Hng with urocanic acid [96]. [Pg.160]

Lee et al. reported a novel and simple method for delivery of adriamycin using self-aggregates of deoxycholic acid modified chitosan. Deoxycholic acid was covalently conjugated to chitosan via a carbodiimide-mediated reaction generating self-aggregated chitosan nanoparticles. Adriamycin was... [Pg.175]

Acidic modifier Trifluoroacetic acid Formic acid Propionic acid Acetic acid Ionization completely suppressed Good separation/ionization Good separation/ionization Best separation/ionization... [Pg.205]

Fig. 17. Cyclic voltammogram of the water-soluble Rieske fragment from the bci complex of Paracoccus denitrificans (ISFpd) at the nitric acid modified glassy carbon electrode. Protein concentration, 1 mg/ml in 50 mM NaCl, 10 mM MOPS, 5 mM EPPS, pH 7.3 T, 25°C scan rate, 10 mV/s. The cathodic (reducing branch, 7 < 0) and anodic (oxidizing branch, 7 > 0) peak potentisds Emd the resulting midpoint potential are indicated. SHE, standEU d hydrogen electrode. Fig. 17. Cyclic voltammogram of the water-soluble Rieske fragment from the bci complex of Paracoccus denitrificans (ISFpd) at the nitric acid modified glassy carbon electrode. Protein concentration, 1 mg/ml in 50 mM NaCl, 10 mM MOPS, 5 mM EPPS, pH 7.3 T, 25°C scan rate, 10 mV/s. The cathodic (reducing branch, 7 < 0) and anodic (oxidizing branch, 7 > 0) peak potentisds Emd the resulting midpoint potential are indicated. SHE, standEU d hydrogen electrode.
Stereochemical Studies of the Enantio-differentiating Hydrogenation of Various Prochiral Ketones over Tartaric Acid-Modified Nickel Catalyst... [Pg.231]

IV. Phosphoric acid modifiers. Journal of Dental Research, 47, 233-43. [Pg.281]

FIGURE 10.13 The TLC profiles of labeled peaks isolated from [U- C]ascorbic-acid-modified calf lens protein obtained from Bio-Gel P-2 chromatography. Peaks 2 to 7 were spotted on a preparative silica gel TLC plate and developed with ethanol/ammonia (7 3, v/v). The fluorescence in each lane was detected by irradiation with a Wood s lamp at 360 nm, and the pattern of radioactivity was determined by scanning the plate with AMBIS imaging system. (Reprinted with permission from Cheng, R. et al., Biochim. Biophys. Acta, 1537, 14-26, 2001. Copyright (2001) Elsevier.)... [Pg.249]

Scheme5-24 Eq. (1) Proposed mechanism for Eq. (2) Stoichiometric reactions relevant to the phosphinic acid-modified palladium-catalyzed proposed mechanism hydrophosphinylation of alkynes. Scheme5-24 Eq. (1) Proposed mechanism for Eq. (2) Stoichiometric reactions relevant to the phosphinic acid-modified palladium-catalyzed proposed mechanism hydrophosphinylation of alkynes.
Polyesters may be used [27-30,223] instead of a fatty acid modifier for imidazoline. Thus a corrosion inhibitor with film-forming and film-persistency characteristics can be produced by first reacting, in a condensation reaction, a polybasic acid with a polyalcohol to form a partial ester. The partial ester is reacted with imidazoline or fatty diamines to result in a salt of the ester. Oil-soluble, highly water-dispersible corrosion inhibitor or oil-dispersible. [Pg.97]

Miniaturized columns have provided a decisive advantage in speed. Uracil, phenol, and benzyl alcohol were separated in 20 seconds by CEC in an 18 mm column with a propyl reversed phase.29 A19 cm electrophoretic channel was etched into a glass wafer, filled with a y-cyclodextrin buffer, and used to resolve chiral amino acids from a meteorite in 4 minutes.30 A 6 cm channel equipped with a syringe pump to automate sample derivatization was used to separate amino acids modified with fluorescein isothiocyanate.31 Nanovials have been used to perform tryptic digests on the 15 nL scale for subsequent separation on capillary Electrophoresis.32 A microcolumn has also been used to generate fractions representing time-points of digestion from a 40 pL sample.33 A disposable nanoelectrospray emitter has been... [Pg.429]

On-line SFE-pSFC-FTD, using formic or acetic acid modified CO2 as an extraction solvent, was used to analyse a dialkyltin mercaptide stabiliser in rigid PVC (Geon 87444) [114]. Hunt et al. [115] reported off-line SFE-pSFC-UV analysis of PVC/(DIOP, chlorinated PE wax, Topanol CA), using methanol as a modifier. Individual additives are unevenly extracted at lower pressures and temperatures, where extraction is incomplete. Topanol CA, the most polar of the three PVC additives studied, could not be fully extracted in the time-scale required (15-20min), even at the highest CO2 temperature and pressure obtainable. However, methanol-modified CO2 enhances extraction of Topanol CA. PVC film additives (DEHP, fatty acids, saturated and aromatic hydrocarbons) were also separated by off-line SFE-preparative SFC, and analysed by PDA and IR [116]. [Pg.443]

A common theme is the existence of modified (enantioselective) sites and unmodified (racemic) sites. For the case of the tartaric acid modified Ni, it is postulated that the tartaric acid is adsorbed on the surface and stereodirects (through hydrogen bonding) adsorption of the incoming 3-ketoesters.18 19 Support for this comes from an isotope effect from deuterium labeling.23 Increased enantioselectivities resulting from co-modification with NaBr is believed to result from poisoning the racemic sites.24 A similar technique in... [Pg.107]

FIGURE 17.23 2D contour plot of a propionic acid modified polyamide 6.6 (assignments according to Table 17.1), first dimension LCCC, second dimension MALDI-TOF. (See color plate.)... [Pg.414]

Scheme 6. Proposed biosynthesis of preelavulone A (30) and prostaglandin A2 (41) from arachidonic acid, modified from Corey and coworkers [57]... Scheme 6. Proposed biosynthesis of preelavulone A (30) and prostaglandin A2 (41) from arachidonic acid, modified from Corey and coworkers [57]...

See other pages where Acid-modified is mentioned: [Pg.799]    [Pg.10]    [Pg.209]    [Pg.344]    [Pg.485]    [Pg.255]    [Pg.558]    [Pg.799]    [Pg.1023]    [Pg.528]    [Pg.176]    [Pg.148]    [Pg.231]    [Pg.247]    [Pg.332]    [Pg.59]    [Pg.328]    [Pg.105]    [Pg.112]    [Pg.300]    [Pg.367]   
See also in sourсe #XX -- [ Pg.332 ]




SEARCH



Modifier acidic

© 2024 chempedia.info