Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly reinforcing

Properties Homopolymer Copolymer 20% glass-reinforced homopolymer 25% glass-reinforced copolymer 21% poly(tetrafluoroethylene)- filled homopolymer... [Pg.1026]

Fluorinated ethylene-propylene resin Poly(vinylidene fluoride) Ethylene-tetrafluoroethylene copolymer Ethylene- chlorotrifluoro- ethylene copolymer Cellulose- filled Glass-fiber- reinforced... [Pg.1036]

Low viscosity 30% glass-fiber reinforced Poly(butylene terephthalate) Poly(ethylene terephthalate) ... [Pg.1044]

Properties Unfilled 20% glass-fiber- reinforced Unfilled 20% glass-fiber- reinforced Poly(ether sulfone) Poly(phenyl sulfone)... [Pg.1056]

Poly(vinyl chloride) and poly(vinyl acetate) Poly(vinyl chloride), 15% glass-fiber-reinforced Chlorinated poly(vinyl chloride) Poly(vinyl butyral), flexible ... [Pg.1060]

Dry chlorine has a great affinity for absorbing moisture, and wet chlorine is extremely corrosive, attacking most common materials except HasteUoy C, titanium, and tantalum. These metals are protected from attack by the acids formed by chlorine hydrolysis because of surface oxide films on the metal. Tantalum is the preferred constmction material for service with wet and dry chlorine. Wet chlorine gas is handled under pressure using fiberglass-reinforced plastics. Rubber-lined steel is suitable for wet chlorine gas handling up to 100°C. At low pressures and low temperatures PVC, chlorinated PVC, and reinforced polyester resins are also used. Polytetrafluoroethylene (PTFE), poly(vinyhdene fluoride) (PVDE), and... [Pg.510]

Small amounts of TAIC together with DAP have been used to cure unsaturated polyesters in glass-reinforced thermo sets (131). It has been used with polyfunctional methacrylate esters in anaerobic adhesives (132). TAIC and vinyl acetate are copolymerized in aqueous suspension, and vinyl alcohol copolymer gels are made from the products (133). Electron cure of poly(ethylene terephthalate) moldings containing TAIC improves heat resistance and transparency (134). [Pg.88]

Liquid polyalurninum chloride is acidic and corrosive to common metals. Suitable materials for constmction of storage and handling facilities include synthetic mbber-lined steel, corrosion resistant fiber glass reinforced plastics (FRP), ceramics, tetrafluoroethylene polymer (PTFE), poly(vinyhdene fluoride) (PVDF), polyethylene, polypropylene, and poly(vinyl chloride) (PVG). Suitable shipping containers include mbber-lined tank tmcks and rail cars for bulk shipment and plastic-lined or aH-plastic dmms and tote bins for smaller quantities. Except for aluminum chlorohydrates, PAG products are shipped as hazardous substances because of their acidity. [Pg.180]

CPA. Copolymer alloy membranes (CPAs) are made by alloying high molecular weight polymeries, plasticizers, special stabilizers, biocides, and antioxidants with poly(vinyl chloride) (PVC). The membrane is typically reinforced with polyester and comes in finished thicknesses of 0.75—1.5 mm and widths of 1.5—1.8 m. The primary installation method is mechanically fastened, but some fully adhered systems are also possible. The CPA membranes can exhibit long-term flexibiHty by alleviating migration of the polymeric plasticizers, and are chemically resistant and compatible with many oils and greases, animal fats, asphalt, and coal-tar pitch. The physical characteristics of a CPA membrane have been described (15). [Pg.213]

PVC. Poly(vinyl chloride) (PVC), a very versatile polymer, is manufactured by the polymerisation of vinyl chloride monomer, a gaseous substance obtained from the reaction of ethylene with oxygen and hydrochloric acid. In its most basic form, the resin is a relatively hard material that requites the addition of other compounds, commonly plasticisers and stabilisers as well as certain other ingredients, to produce the desired physical properties for roofing use. The membranes come in both reinforced and nonreinforced constmctions, but since the 1980s the direction has been toward offering only reinforced membranes. The membrane thickness typically mns from 0.8—1.5 mm and widths typically in the range of 1.5—4.6 m. [Pg.214]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

Shipment ndStora.ge. The crystalline material is shipped as a nonha2ardous material, in polyethylene-lined fiber dmms. The solution can be shipped in dmms or bulk. Suitable materials of constmction for handling ammonium thiocyanate are aluminum, 316 stainless steel, mbber, poly(vinyl chloride), and glass-reinforced epoxy. Steel, 304 stainless steel, and copper alloys should be avoided (375,376). [Pg.152]

Fig. 1. U.S. reinforcement consumption for tires, where A shows cotton B, rayon C, total all-fibers D, nylon E, conventional poly(ethylene terephthalate)... Fig. 1. U.S. reinforcement consumption for tires, where A shows cotton B, rayon C, total all-fibers D, nylon E, conventional poly(ethylene terephthalate)...
Nylon, an aUphatic polyamide, was introduced as a commercial tire cord in 1947 and grew in usage to - 5.4 billion kg/yr (- 2 billion Ib/yr) in the 1990s (10,11). Nylon-reinforced tires use nylon-6 poljmier (polycaprolactam) fibers as well as nylon-6,6 (poly(hexamethylenediainine adipamide)) fibers. Nylon tire cords are characterized by extremely good fatigue resistance in compression and good adhesion to most mbber compounds with simple RFL adhesives. [Pg.82]

The bonding properties of (Ti02) have been used for size-reinforcing of glass fibers so that they adhere to asphalt or to a PTEE—polysulfide mixture to impart enhanced flex endurance (434—436). Poly(vinyl alcohol) (PVA) solutions mixed with sucrose can be cross-linked with the lactic acid chelate and used generally for glass-fiber sizing (437). [Pg.161]

Poly(vinyl acetate) latex paints are the first choice for interior use (149). Their abihty to protect and decorate is reinforced by several advantages belonging exclusively to latex paints they do not contain solvents so that physiological harm and fire ha2ards are eliminated they are odorless they are easy to apply with spray gun, roUer-coater, or bmsh and they dry rapidly. The paint can be thinned with water, and bmshes or coaters can be cleaned with soap and tepid water. The paint is usually dry in 20 minutes to two hours, and two coats may be applied the same day. [Pg.470]

Other. Vinyl acetate resins are useful as antishrinking agents for glass fiber-reinforced polyester mol ding resins (165). Poly(vinyl acetate)s are also used as binders for numerous materials, eg, fibers, leather (qv), asbestos, sawdust, sand, clay, etc, to form compositions that can be shaped with heat and pressure. Joint cements, taping compounds, caulks, and fillers are other uses. [Pg.471]

Asbestos fibers have likewise been used in reinforcement of plastics such as poly(vinyl chloride), phenoHcs, polypropylene, nylon, etc. Reinforcement of both thermoset and thermoplastic resins by asbestos fibers has been practiced to develop products for the automotive, electronic, and printing industries. [Pg.354]

Corrosion. Aqueous solutions of citric acid are mildly corrosive toward carbon steels. At elevated temperatures, 304 stainless steel is corroded by citric acid, but 316 stainless steel is resistant to corrosion. Many aluminum, copper, and nickel alloys are mildly corroded by citric acid. In general, glass and plastics such as fiber glass reinforced polyester, polyethylene, polypropylene, poly(vinyl chloride), and cross-linked poly(vinyl chloride) are not corroded by citric acid. [Pg.181]

Some of the common types of plastics that ate used ate thermoplastics, such as poly(phenylene sulfide) (PPS) (see Polymers containing sulfur), nylons, Hquid crystal polymer (LCP), the polyesters (qv) such as polyesters that ate 30% glass-fiber reinforced, and poly(ethylene terephthalate) (PET), and polyetherimide (PEI) and thermosets such as diaHyl phthalate and phenoHc resins (qv). Because of the wide variety of manufacturing processes and usage requirements, these materials ate available in several variations which have a range of physical properties. [Pg.32]

Poly(vinyl alcohol) is employed for a variety of purposes. Film cast from aqueous alcohol solution is an important release agent in the manufacture of reinforced plastics. Incompletely hydrolysed grades have been developed for water-soluble packages for bath salts, bleaches, insecticides and disinfectants. Techniques for making tubular blown film, similar to that used with polyethylene, have been developed for this purpose. Moulded and extruded products which combine oil resistance with toughness and flexibility are produced in the United States but have never become popular in Europe. [Pg.391]


See other pages where Poly reinforcing is mentioned: [Pg.323]    [Pg.323]    [Pg.323]    [Pg.323]    [Pg.330]    [Pg.72]    [Pg.73]    [Pg.73]    [Pg.71]    [Pg.72]    [Pg.492]    [Pg.221]    [Pg.300]    [Pg.322]    [Pg.536]    [Pg.57]    [Pg.82]    [Pg.164]    [Pg.333]    [Pg.337]    [Pg.471]    [Pg.494]    [Pg.13]    [Pg.86]    [Pg.261]    [Pg.498]    [Pg.721]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Poly Reinforcements

© 2024 chempedia.info