Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar compound definition

Organic matter extracted from earth materials usually is fractionated on the basis of solubility characteristics. The fractions commonly obtained include humic acid (soluble in alkaline solution, insoluble in acidic solution), fulvic acid (soluble in aqueous media at any pH), hymatomelamic acid (alcohol-soluble part of humic acid), and humin (insoluble in alkaline solutions). This operational fractionation is based in part on the classical definition by Aiken et al. (1985). It should be noticed, however, that this fractionation of soil organic matter does not lead to a pure compound each named fraction consists of a very complicated, heterogeneous mixture of organic substances. Hayes and Malcom (2001) emphasize that biomolecules, which are not part of humic substances, also may precipitate at a pH of 1 or 2 with the humic acids. Furthermore, the more polar compounds may precipitate with fulvic acids. [Pg.15]

By definition, the fraction that enters the circulatory system is eliminated by extrarenal mechanisms (usually metabolism by the liver and other tissues) and is derived by the difference from renal excretion that is, 1 — Fg. The excretory organs are able to eliminate polar compounds such as tetracycline and tylosin more efficiently than compounds that are highly soluble in lipids (i.e., lipophilic) such as metronidazole, erythromycin, clindamycin, and trimethoporin. Thus, the highly lipophilic compounds will not be eliminated until they are metabolized to more polar intermediates. [Pg.122]

The suitability of a stationary phase for a specific separation depends upon the selectivity of the phase. This is a measure of the degree to which polar compounds are retarded relative to their elution on a nonpolar phase. A systematic method for expressing the retention data is based on retention indices. For this sytem, the retention indices of the n-paraffins are by definition equal to 100 times the number of carbon atoms in the molecule. For example, the retention index for n-hexane is 600 and for n-octane 800. These values are defined and apply regardless of the column used and regardless of the temperature. [Pg.129]

The most common detectors for GC are the non-selective flame ionisation detector and thermal conductivity detector. For element speciation, selectivity is definitely advantageous, allowing less sample preparation and less demanding separation. Of the conventional GC detectors, the electron capture detector is very sensitive for electrophilic compounds and therefore has some selectivity for polar compounds containing halogens and metal ions. It has been used widely... [Pg.68]

It was also discovered that there were certain disadvantages to the use of gas chromatography. Only fairly volatile compounds could be analyzed by this technique although the definition ofvolatility was extended each year. Furthermore, the possibility of forming volatile derivatives of highly polar compounds was limited. For many polar and thermolabile compounds, gas chromatography was not a suitable choice. [Pg.239]

From a kinetic viewpoint, salinity action on the water solution structure is similar to the action of temperature and pressure. This was a reason to compare the effect of temperature and pressure, on the one hand, and salinity, on the other, on the mobility of solution components, and therefore, on its structure. In this connection John Desmond Bernal (1901-1971) and Ralph Howard Fowler (1889-1944) introduced the concept of structural temperature of the solution. Under their definition, structural temperature of a given solution is equal to the temperatme of pine water with the solution s structural properties (viscosity, density, refraction, etc.). Ions with positive hydration work as lowering of temperature and have structural temperature below the solution temperature ions with negative hydration - as increase of temperature, and their structural temperature is higher than the solution s temperature. Non-polar compounds occupy plentiful space, thereby lowering the intensity of translation motion of the water molecules, lowering the structural temperature of the solution, as in a case of positive hydration. [Pg.18]

It turned out that ions of intact molecular species could be generated even in case of highly polar compounds that definitely were no candidates for electron ionization (El, Chaps. 5, 6) or chemical ionization (Cl, Chap. 7). Early FAB-MS suffered from rapid radiolytic decomposition of the samples upon irradiation and from the comparatively harsh conditions of desorption/ionization. The use of a liquid matrix in which the analyte was dissolved meant a major breakthrough [14,15], Today one would refer to this as matrix-assisted fast atom bombardment [16,17]. FAB-MS soon became the major competitor of field desorption (Chap. 8). It turned out that the properties of the liquid matrix are of key importance for the resulting FAB spectra [18-20]. Due to some electric conductivity of the matrix, primary ions could now again be employed successfully [21-24]. If primary ions instead of neutrals are used to provide the energy for secondary ion... [Pg.479]

Definition A complex combination of hydrocarbons obtained by treatment of a petroleum wax fraction with natural or modified clay to remove trace amts, of polar compounds and impurities predominantly straight chain saturated hydrocarbons (C20-50)... [Pg.2267]

Acentric Factor The acentric facdor of a compound (co) is primarily a measure of the shape of a molecule, though it also measures a molecules polarity. It is calculated from the reduced vapor pressure (P ) at a reduced temperature of 0.7 by the definition, Eq. (2-23). [Pg.389]

Recently a definitive study of several isoxazol-5-ones using infrared and ultraviolet spectroscopy (Table I) has shown that the balance between the various tautomers is a delicate one and that all three of the structural types can predominate depending upon the nature of the substituents and the conditions of the experiment. However, the hydroxy form is only found when it is stabilized by chelation (i.e., a carbonyl substituent in the 4-position). The other compounds exist in the CH form in nonpolar media increasing polarity of the solvent stabilizes increasing amounts of the more polar NH forms. [Pg.38]

On the basis of the reaction of alkyl radicals with a number of polycyclic aromatics, Szwarc and Binks calculated the relative selectivities of several radicals methyl, 1 (by definition) ethyl, 1.0 n-propyl, 1.0 trichloromethyl, 1.8. The relative reactivities of the three alkyl radicals toward aromatics therefore appears to be the same. On the other hand, quinoline (the only heterocyclic compound so far examined in reactions with alkyl radicals other than methyl) shows a steady increase in its reactivity toward methyl, ethyl, and n-propyl radicals. This would suggest that the nucleophilic character of the alkyl radicals increases in the order Me < Et < n-Pr, and that the selectivity of the radical as defined by Szwarc is not necessarily a measure of its polar character. [Pg.163]

It might be mentioned that matters are much simpler for organometallic compounds with less-polar bonds. Thus Et2Hg and EtHgCl are both definite compounds, the former is a liquid and the latter is a solid. Organocalcium reagents are also known, and they are formed from alkyl halides via a single electron transfer (SET) mechanism with free-radical intermediates. "... [Pg.237]

Cu9ln4 and Cu2Se. They performed electrodeposition potentiostatically at room temperature on Ti or Ni rotating disk electrodes from acidic, citrate-buffered solutions. It was shown that the formation of crystalline definite compounds is correlated with a slow surface process, which induced a plateau on the polarization curves. The use of citrate ions was found to shift the copper deposition potential in the negative direction, lower the plateau current, and slow down the interfacial reactions. [Pg.117]

The polar character of neonicotinoids makes them, in general, potentially mobile in soil. Acetamiprid and nitenpyram have short soil persistence. Imidacloprid and thi-amethoxam, however, are sufficiently persistent in soil to be used for soil treatment. The definition of soil residues for the various neonicotinoid compounds except for imidacloprid are the parent compound and it metabolites. The metabolites of acetamiprid are lM-1-2, lM-1-4 and lC-0 (Figure 6). The metabolites of nitenpyram are 2-[N-(6-chloro-3-pyridyl-methyl)-A-ethyl]amino-2-methyliminoacetic acid (CPMA) and A-(6-chloro-3-pyridylmethyl)-Ai-ethyl-A -methylformamidine] (CPMF). [Pg.1138]

Trying to determine which column is ideal for a specific analysis can be difficult with over 1000 different columns on the market [74]. A proper choice implies a definition of parameters such as column material, stationary phase (polarity), i.d., film thickness and column length. Guides to column selection are available [74,75]. The most important consideration is the stationary phase. When selecting an i.d., sample concentration and instrumentation must be considered. If the concentration of the sample exceeds the column s capacity, then loss of resolution, poor reproducibility and peak distortion will result. Film thickness has a direct effect on retention and the elution temperature for each sample compound. Longer columns provide more resolving probe, increase analysis times and cost. [Pg.185]

Whether zinc is a main-group or transition metal depends, of course, on one s definition of transition metal and main-group metal. Those who classify zinc as a main-group metal cite its (almost) exclusive oxidation number of +2 in compounds (but see Section 2.06.15.2) and the absence of a partially filled r/ shell in the metal and its compounds. Those who classify zinc as a transition metal usually note its much greater effective nuclear charge, polarizing power and its limited, but well defined, coordination chemistry. [Pg.313]

It would appear that the specific action of an enzyme upon its substrate is conditioned by a definite chemical structure and spatial arrangement of the constituent polar and non-polar groups of the enzyme protein as well as by the constitution and configuration of the substrate. In some cases an enzyme interacts with one chemical compound only. For example, galactokinase extracted from Saccharomyces fragilis (grown on whey) catalyzes the transphosphorylation between adenosine triphos-... [Pg.62]

In dilute solution, the dependance of LnRj on solvent polarity for copolymers is definitely measurable, but it is significantly reduced with respect to that of the model compounds, by a factor of about 3 for a predominantly syndiotactic chain bearing keto-2-picolyl functions in the form of isolated units (DSm = 0.129,... [Pg.131]


See other pages where Polar compound definition is mentioned: [Pg.378]    [Pg.381]    [Pg.20]    [Pg.24]    [Pg.200]    [Pg.723]    [Pg.32]    [Pg.26]    [Pg.355]    [Pg.112]    [Pg.310]    [Pg.600]    [Pg.32]    [Pg.1103]    [Pg.237]    [Pg.535]    [Pg.190]    [Pg.66]    [Pg.11]    [Pg.48]    [Pg.195]    [Pg.42]    [Pg.25]    [Pg.5]    [Pg.290]    [Pg.1372]    [Pg.120]    [Pg.227]    [Pg.17]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Compound, definition

Compounding definition

Polar compounds

Polarity definition

Polarization definition

© 2024 chempedia.info