Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma torch method

Figure 16 Schematic diagram of the plasma torch method. (From Ref. 180.)... Figure 16 Schematic diagram of the plasma torch method. (From Ref. 180.)...
Lasers can be used in either pulsed or continuous mode to desorb material from a sample, which can then be examined as such or mixed or dissolved in a matrix. The desorbed (ablated) material contains few or sometimes even no ions, and a second ionization step is frequently needed to improve the yield of ions. The most common methods of providing the second ionization use MALDI to give protonated molecular ions or a plasma torch to give atomic ions for isotope ratio measurement. By adjusting the laser s focus and power, laser desorption can be used for either depth or surface profiling. [Pg.12]

If a sample solution is introduced into the center of the plasma, the constituent molecules are bombarded by the energetic atoms, ions, electrons, and even photons from the plasma itself. Under these vigorous conditions, sample molecules are both ionized and fragmented repeatedly until only their constituent elemental atoms or ions survive. The ions are drawn off into a mass analyzer for measurement of abundances and mJz values. Plasma torches provide a powerful method for introducing and ionizing a wide range of sample types into a mass spectrometer (inductively coupled plasma mass spectrometry, ICP/MS). [Pg.87]

Fundamentally, introduction of a gaseous sample is the easiest option for ICP/MS because all of the sample can be passed efficiently along the inlet tube and into the center of the flame. Unfortunately, gases are mainly confined to low-molecular-mass compounds, and many of the samples that need to be examined cannot be vaporized easily. Nevertheless, there are some key analyses that are carried out in this fashion the major one i.s the generation of volatile hydrides. Other methods for volatiles are discussed below. An important method of analysis uses lasers to vaporize nonvolatile samples such as bone or ceramics. With a laser, ablated (vaporized) sample material is swept into the plasma flame before it can condense out again. Similarly, electrically heated filaments or ovens are also used to volatilize solids, the vapor of which is then swept by argon makeup gas into the plasma torch. However, for convenience, the methods of introducing solid samples are discussed fully in Part C (Chapter 17). [Pg.98]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

In principle, DSI is the simplest method for sample introduction into a plasma torch since the sample is placed into the base of the flame, which then heats, evaporates, and ionizes the sample, all in one small region. Inherent sensitivity is high because the sample components are already in the flame. A diagrammatic representation of a DSI assembly is shown in Figure 17.4. [Pg.114]

For solids, there is now a very wide range of inlet and ionization opportunities, so most types of solids can be examined, either neat or in solution. However, the inlet/ionization methods are often not simply interchangeable, even if they use the same mass analyzer. Thus a direct-insertion probe will normally be used with El or Cl (and desorption chemical ionization, DCl) methods of ionization. An LC is used with ES or APCI for solutions, and nebulizers can be used with plasma torches for other solutions. MALDI or laser ablation are used for direct analysis of solids. [Pg.280]

When mass spectrometry was first used as a routine analytical tool, El was the only commercial ion source. As needs have increased, more ionization methods have appeared. Many different types of ionization source have been described, and several of these have been produced commercially. The present situation is such that there is now only a limited range of ion sources. For vacuum ion sources, El is still widely used, frequently in conjunction with Cl. For atmospheric pressure ion sources, the most frequently used are ES, APCI, MALDI (lasers), and plasma torches. [Pg.282]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

Almost any kind of ion source could be used, but, again, in practice only a few types are used routinely and are often associated with the method used for sample introduction. Thus, a plasma torch is used most frequently for materials that can be vaporized (see Chapters 14-17 and 19). Chapter 7, Thermal Ionization, should be consulted for another popular method in accurate isotope ratio measurement. [Pg.366]

All methods of plasma production require some electrons to be present as electric-discharge initiators. For a plasma torch, the initiating electrons are introduced from a piezoelectric spark directed into argon gas flowing in the interval between two concentric quartz tubes. [Pg.395]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Onion-like graphitic clusters have also been generated by other methods (a) shock-wave treatment of carbon soot [16] (b) carbon deposits generated in a plasma torch[17], (c) laser melting of carbon within a high-pressure cell (50-300 kbar)[l8]. For these three cases, the reported graphitic particles display a spheroidal shape. [Pg.164]

A number of other deposition methods have been used for growing diamond, with varying degrees of success. These include oxyacetylene welding torches, arc jets and plasma torches, laser ablation and hquid phase crystallisation, but none of these yet reahstically compete with the hot filament or microwave systems for reliability and reproducibility. [Pg.80]

Applications Over the last 20 years, ICP-AES has become a widely used elemental analysis tool in many laboratories, which is also used to identify/quantify emulsifiers, contaminants, catalyst residues and other inorganic additives. Although ICP-AES is an accepted method for elemental analysis of lubricating oils (ASTM D 4951), often, unreliable results with errors of up to 20% were observed. It was found that viscosity modifier (VM) polymers interfere with aerosol formation, a critical step in the ICP analysis, thus affecting the sample delivery to the plasma torch [193]. Modifications... [Pg.622]

In the Verneuil method, the powdered sample is melted in a high temperature, oxy-hydrogen flame and droplets allowed to fall on to a seed crystal where they crystallize. This is an old method used originally to produce artificial ruby. Using the same method but using a plasma torch to melt the powder, can achieve even higher temperatures. [Pg.173]

The wettability of ABS can be increased by the treatment with an atmospheric plasma torch (64).. This was established by contact angle measurements and other methods. The wettability was increased when the atmospheric plasma treatment was done in a slow manner. The decrease in contact angle with respect to water is explained due to a significant increase in the oxygen content, which is caused by the formation of carboxylic and hydroxyl groups on the polymer surface. [Pg.231]

Figure 14.16—Elements determined by AAS or FES. Most elements can be determined by atomic-absorption or flame emission using one of the available atomisation modes (burner, graphite furnace or hydride formation). Sensitivity varies enormously from one element to another. The representation above shows the elements in their periodic classification in order to show the wide use of these methods. Some of the lighter elements, C, N, O, F, etc. in the figure can be determined using a high temperature thermal source a plasma torch, in association with a spcctropholometric device (ICP-AbS) or a mass spectrometer (1CP-MS). Figure 14.16—Elements determined by AAS or FES. Most elements can be determined by atomic-absorption or flame emission using one of the available atomisation modes (burner, graphite furnace or hydride formation). Sensitivity varies enormously from one element to another. The representation above shows the elements in their periodic classification in order to show the wide use of these methods. Some of the lighter elements, C, N, O, F, etc. in the figure can be determined using a high temperature thermal source a plasma torch, in association with a spcctropholometric device (ICP-AbS) or a mass spectrometer (1CP-MS).
Besides plasmas, which are at the forefront of thermal atomisation devices, other excitation processes can be used. These methods rely on sparks or electrical arcs. They are less sensitive and take longer to use than methods that operate with samples in solution. These excitation techniques, with low throughputs, are mostly used in semi-quantitative analysis in industry (Fig. 15.2). Compared to the plasma torch, thermal homogeneity in these techniques is more difficult to master. [Pg.275]

Plasma methods. Plasmas are discharges in a low-pressure gas environment (0.01-0.02 Pa), that can be used for the direct synthesis of fine powders, or for the deposition of coatings.63,64 Two major types of plasmas are used in materials processing.65 In thermal plasmas (equilibrium, high-temperature, or plasma torch) electrons and gas molecules are at comparable temperatures, which are typically thousands of degrees. Solid... [Pg.299]

Trace levels (10 to 10 g/g of sample) of silver can be accurately determined in biological samples by several different analytical techniques, provided that the analyst is well acquainted with the specific problems associated with the chosen method. These methods include high frequency plasma torch-atomic emission spectroscopy (HFP-AES), neutron activation analysis (NAA), graphite furnace (flameless) atomic absorption spectroscopy (GFAAS), flame atomic absorption spectroscopy (FAAS), and micro-cup atomic absorption spectroscopy (MCAAS). [Pg.111]

There is also a standard test method for determination of major and minor elements in coal ash by inductively coupled plasma (ICP)-atomic emission spectrometry (ASTM D-6349). In the test method, the sample to be analyzed is ashed under standard conditions and ignited to constant weight. The ash is fused with a fluxing agent followed by dissolution of the melt in dilute acid solution. Alternatively, the ash is digested in a mixture of hydrofluoric, nitric, and hydrochloric acids. The solution is analyzed by (ICP)-atomic emission spectrometry for the elements. The basis of the method is the measurement of atomic emissions. Aqueous solutions of the samples are nebulized, and a portion of the aerosol that is produced is transported to the plasma torch, where excitation and emission occurs. Characteristic line emission spectra are produced by a radio-frequency inductively coupled plasma. A grating monochromator system is used to separate the emission lines, and the intensities of the lines are monitored by photomultiplier tube or photodiode array detection. The photocurrents from the detector... [Pg.104]

ICP-MS is another means of detection that has been used for the determinations of tin compounds following HPLC separation. Two different types of plasma torch were assessed for the analysis of alkyltin species (Branch et al., 1989) An experimental low flow torch yielded better limits of detection than the standard torch. The limit of detection of TBT using the standard torch was 1.6 ng (as tin), an improvement of several orders of magnitude over an HPLC-AAS coupling. Results of analyses of spiked water samples by this method and by the HPLC-AAS method were in satisfactory agreement. [Pg.430]

In the case of hot-filament CVD, refractory metal filaments (e.g., W, Ta, Re, etc.) are electrically heated to very high temperatures (between 2000 and 2700°C) to produce the necessary amount of atomic hydrogen that is necessary for the reasons mentioned above for the synthesis of diamond. Except for combustion flame CVD, hot-filament CVD is considered the simplest of all of the methods and also the most inexpensive. Plasma-jet and laser-assisted CVD methods rely on a plasma torch or laser to attain the very high temperatures that are needed to... [Pg.383]

The highest melting material that can be grown by the flame fusion method is determined by the maximum temperature of the flame. A plasma torch may be used as an alternative heat source for materials that decompose in a hydrogen-oxygen or coal gas-oxygen flame. [Pg.119]


See other pages where Plasma torch method is mentioned: [Pg.155]    [Pg.231]    [Pg.42]    [Pg.155]    [Pg.231]    [Pg.42]    [Pg.97]    [Pg.258]    [Pg.197]    [Pg.163]    [Pg.92]    [Pg.311]    [Pg.378]    [Pg.58]    [Pg.199]    [Pg.294]    [Pg.29]    [Pg.268]    [Pg.421]    [Pg.29]    [Pg.6097]    [Pg.109]    [Pg.334]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Plasma method

Plasma torch

© 2024 chempedia.info