Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular mass of compounds

GC-MS, especially capillary GC-MS, has become a widely used method, and is becoming very important also in routine analyses. Quadmpole mass spectrometers (Section 3.6.2.6) are most common in GC-MS. The quadmpole MS instmment has a mass range that covers the molecular masses of compounds which can be chromatographed by GC. [Pg.34]

Finally, note that the ions produced by the combined inlet and ion sources, such as electrospray, plasmaspray, and dynamic FAB, are normally molecular or quasi-molecular ions, and there is little or none of the fragmentation that is so useful for structural work and for identifying compounds through a library search. While production of only a single type of molecular ion may be useful for obtaining the relative molecular mass of a substance or for revealing the complexity of a mixture, it is often not useful when identification needs to be done, as with most general analyses. Therefore,... [Pg.263]

Ideally, a mass spectmm contains a molecular ion, corresponding to the molecular mass of the analyte, as well as stmcturaHy significant fragment ions which allow either the direct deterrnination of stmcture or a comparison to Hbraries of spectra of known compounds. Mass spectrometry (ms) is unique in its abiUty to determine direcdy the molecular mass of a sample. Other techniques such as nuclear magnetic resonance (nmr) and infrared spectroscopy give stmctural information from which the molecular mass may be inferred (see Infrared technology and raman spectroscopy Magnetic spin resonance). [Pg.539]

Another interesting application of LC-LC is the determination of low-molecular-mass carbonyl compounds in air. Carbonyl compounds, such as aldehydes and ketones, are now being given more and more attention, both as pollutants and as... [Pg.353]

Figure 13,12 Illusti ation of the clean-up method, showing the analysis of an air sample (a) with and (b) without column switching. Details of the analytical conditions are given in the text. Reprinted from Journal of Chromatography, A 697, R R. Kootsti a and H. A. Herbold, Automated solid-phase exti action and coupled-column reversed-phase liquid cltromatogra-phy for the trace-level determination of low-molecular-mass carbonyl compounds in ak , pp. 203-211, copyright 1995, with permission from Elsevier Science. Figure 13,12 Illusti ation of the clean-up method, showing the analysis of an air sample (a) with and (b) without column switching. Details of the analytical conditions are given in the text. Reprinted from Journal of Chromatography, A 697, R R. Kootsti a and H. A. Herbold, Automated solid-phase exti action and coupled-column reversed-phase liquid cltromatogra-phy for the trace-level determination of low-molecular-mass carbonyl compounds in ak , pp. 203-211, copyright 1995, with permission from Elsevier Science.
P. R. Kootstr-a and H. A. Herbold, Automated solid-phase extraction and coupled-column reversed-phase liquid cliromatogr aphy for the trace-level determination of low-molecular-mass carbonyl compounds in ak , 7. Chromatogr. 697 203-211 (1995). [Pg.373]

The term titrimetric analysis refers to quantitative chemical analysis carried out by determining the volume of a solution of accurately known concentration which is required to react quantitatively with a measured volume of a solution of the substance to be determined. The solution of accurately known strength is called the standard solution, see Section 10.3. The weight of the substance to be determined is calculated from the volume of the standard solution used and the chemical equation and relative molecular masses of the reacting compounds. [Pg.257]

J.10 (a) White phosphorus, which has the formula P4, burns in air to form compound A, in which the mass percentage of phosphorus is 43.64%, with the remainder oxygen. The mass spectrum of A yields a molar mass of 283.9 g-mol. Write the molecular formula of compound A. (b) Compound A reacts with water to form compound B, which turns litmus red and has a mass percentage composition of 3.087% 11 and 31.60%... [Pg.101]

The enzymes are protein molecules having globular structure, as a rule. The molecular masses of the different enzymes have values between ten thousands and hundred thousands. The enzyme s active site, which, as a rule, consists of a nonproteinic organic compound containing metal ions of variable valency (iron, copper, molybdenum, etc.) is linked to the protein globule by covalent or hydrogen bonds. The catalytic action of the enzymes is due to electron transfer from these ions to the substrate. The protein part of the enzyme secures a suitable disposition of the substrate relative to the active site and is responsible for the high selectivity of catalytic action. [Pg.549]

Polymers are examples of organic compounds. However, the main difference between polymers and other organic compounds is the size of the polymer molecules. The molecular mass of most organic compounds is only a few hundred atomic mass units (for reference, atomic hydrogen has a mass of one atomic mass unit). The molecular masses of polymeric molecules range from thousands to millions of atomic mass units. Synthetic polymers include plastics and synthetic fibers, such as nylon and polyesters. Naturally occurring polymers include proteins, nucleic acids, polysaccharides, and rubber. The large size of a polymer molecule is attained by the repeated attachment of smaller molecules called monomers. [Pg.181]

There is rapid growth in the use of accurate mass measurements in the chemical industries. There is equally a clear need for practical guidance in order to obtain robust measurements. At present, LGC coordinates a collaborative study to evaluate the variation in accurate mass measurement across a broad range of instrument types, using an unknown compound of molecular mass of about 450 Da. [Pg.356]

Synthetic heterocyclic and modified amino acid derivatives have been grouped in a class of thrombin inhibitors called peptidomimetics. An example of such a compound is argatroban, with a molecular mass of 532 Da. It blocks thrombin s active catalytic site by binding to the adjacent apolar binding site. This selective reversible inhibitor of thrombin has a K of 19 nM and blocks thrombin s role in coagulation and fibrinolysis (62). [Pg.150]

A group of peptide derivatives such as peptide arginals and boronic acid peptide derivatives belong to another class of reversible thrombin inhibitors. One such inhibitor is PPACK (D-Phe-Pro-Arg chloromethyl ketone), which functions as a powerful irreversible thrombin inhibitor by alkylating the histidine residue at the catalytic site of thrombin (58). It, however, is unstable in neutral solution, as it undergoes cyclization and inactivation. However, the D-methyl derivative of D-Phe-Pro-Arg-H (D-Mephe-Pro-Arg-H) called efegatran, with a molecular mass of 515 Da, is a stable selective reversible inhibitor of thrombin with a K. of approximately 100 nM. The basic amino terminus in this compound is responsible for promoting the specificity toward thrombin (63). [Pg.150]

Figure 20.7 illustrates compounds that are substrates and, in addition, are inducers of P-gp over-expression. MDR inducers appear to carry at least one type II electron donor unit. Compounds commonly cited as P-gp inducers [72] have a molecular mass of 400-1200 Da and carry on average four type I/type II units. Recently, P-gp up-regulation was also demonstrated for a series of low molecular-mass compounds ( 200-400 Da) such as phenobarbital, clotrimazole, isosafrole, and midazolam [73], Interestingly, the one and only electron donor unit found in these compounds was of type II, which suggests that this motif is essential for P-gp up-regulation. [Pg.475]

Mass spectrometry is an analytical technique to measure molecular masses and to elucidate the structure of molecules by recording the products of their ionization. The mass spectrum is a unique characteristic of a compound. In general it contains information on the molecular mass of an analyte and the masses of its structural fragments. An ion with the heaviest mass in the spectrum is called a molecular ion and represents the molecular mass of the analyte. Because atomic and molecular masses are simple and well-known parameters, a mass spectrum is much easier to understand and interpret than nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV), or other types of spectra obtained with various physicochemical methods. Mass spectra are represented in graphic or table format (Fig. 5.1). [Pg.119]

Unknown 1. Try to identify a compound with the spectrum represented in Fig. 5.1. The exact molecular mass of the compound is 60.0211 Da, which defines its elemental composition as C2H4O2. At this stage pay attention only to the most abundant peaks in the spectrum m/z 60 (molecular ion) and primary fragment ions of m/z 45, m/z 43, m/z 28, and m/z 15. Use the masses of elements from the periodic table of chemical elements. [Pg.120]


See other pages where Molecular mass of compounds is mentioned: [Pg.120]    [Pg.263]    [Pg.729]    [Pg.31]    [Pg.590]    [Pg.120]    [Pg.263]    [Pg.729]    [Pg.31]    [Pg.590]    [Pg.185]    [Pg.246]    [Pg.99]    [Pg.234]    [Pg.223]    [Pg.449]    [Pg.467]    [Pg.89]    [Pg.282]    [Pg.267]    [Pg.143]    [Pg.352]    [Pg.481]    [Pg.481]    [Pg.493]    [Pg.542]    [Pg.403]    [Pg.322]    [Pg.360]    [Pg.366]    [Pg.196]    [Pg.304]    [Pg.672]    [Pg.427]    [Pg.428]    [Pg.640]    [Pg.561]    [Pg.304]   


SEARCH



Binding of low molecular mass compounds

Mass of Compound

Molecular compounds

Molecular mass

© 2024 chempedia.info