Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical, chemical, and biological

Weathering and transportation is followed by the sedimentation of material. The depositional environment can be defined as an area with a typical set of physical, chemical and biological processes which result in a specific type of rock. The characteristics of the resulting sediment package are dependent on the intensity and duration of these processes. The physical, chemical, biological and geomorphic variables... [Pg.78]

Clearly, the next step is the handling of a molecule as a real object with a spatial extension in 3D space. Quite often this is also a mandatory step, because in most cases the 3D structure of a molecule is closely related to a large variety of physical, chemical, and biological properties. In addition, the fundamental importance of an unambiguous definition of stereochemistry becomes obvious, if the 3D structure of a molecule needs to be derived from its chemical graph. The moleofles of stereoisomeric compounds differ in their spatial features and often exhibit quite different properties. Therefore, stereochemical information should always be taken into ac-count if chiral atom centers are present in a chemical structure. [Pg.91]

Physical, chemical, and biological properties are related to the 3D structure of a molecule. In essence, the experimental sources of 3D structure information are X-ray crystallography, electron diffraction, or NMR spectroscopy. For compounds without experimental data on their 3D structure, automatic methods for the conversion of the connectivity information into a 3D model are required (see Section 2.9 of this Textbook and Part 2, Chapter 7.1 of the Handbook) [16]. [Pg.412]

Conformational analysis is the study of how conformational factors affect the structure of a molecule and its physical chemical and biological properties... [Pg.105]

Methods of effluent treatment for dyes may be classified broadly into three main categories physical, chemical, and biological (1). [Pg.381]

The successful application of heterocyclic compounds in these and many other ways, and their appeal as materials in applied chemistry and in more fundamental and theoretical studies, stems from their very complexity this ensures a virtually limitless series of structurally novel compounds with a wide range of physical, chemical and biological properties, spanning a broad spectrum of reactivity and stability. Another consequence of their varied chemical reactivity, including the possible destruction of the heterocyclic ring, is their increasing use in the synthesis of specifically functionalized non-heterocyclic structures. [Pg.47]

Modifications of the wood surface can be performed by various physical, mechanical and chemical treatments. Chemical treatments especially are performed in order to enhance the dimensional stability, but also for amelioration of physical and mechanical properties or a higher resistance against physical, chemical and biological degradation. [Pg.1084]

DOE sites not only are subject to radiological hazards, but also have the typical physical, chemical, and biological hazards associated with other sites. Although your site may seem unlikely to have radiological hazards, they can be found in more places than you might believe. Eor example, if your site manufactures chemicals or other items, or generates electricity, it likely has some form of radiological hazards. [Pg.59]

The present review covers the literature to the end of 1967 and all original sources have been consulted. Syntheses of each of the four ring systems are summarized separately, but physical, chemical, and biological properties are considered generally. Many pjTidopyri-midines were initially synthesized for a study of biological activity or physical properties because of the close structural relationship of these systems to the quinazolines (5) and pteridines (6). Recent reviews have discussed these related compounds. [Pg.150]

The condition of any soil represents a stage in the changing process of soil evolution. Soils develop, mature and change with the passage of time. Whereas the time required for a true soil to develop from the parent rock of the earth may be thousands of years, rapid changes can result in a few years when soils are cultivated, irrigated, or otherwise subjected to man s manipulation. The type of soil that develops from the parent material will depend upon the various physical, chemical and biological factors of the environment. [Pg.377]

The Earth s history, and its future, are shaped not by independent events but by an intricately linked series of feedbacks and responses spanning the spectrum of physical, chemical, and biological cycles, of which the hydrologic cycle is only a part, albeit a central one. [Pg.130]

Movement of raw and transformed materials can take place within the soil and results in zones of accumulation, depletion, or mixing. Formation, migration, and accumulation of different elements, clays, oxides, and organic matter can occur in different parts of the soil. These different zones or layers in soil that are approximately parallel to the surface are called soil horizons. Depleted or enriched soil horizons result in different depths in the soil having different chemical and physical properties. Translocations are caused by a combination of physical, chemical, and biological processes. [Pg.169]

Box models and box-diffusion models have few degrees of freedom and they must describe physical, chemical, and biological processes very crudely. They are based on empirical relations rather than on first principles. Nevertheless, the simple models have been useful for obtaining some general features of the carbon cycle and retain some important roles in carbon cycle research (Craig and Holmen, 1995 Craig et al, 1997 Siegenthaler and joos, 1992). [Pg.303]

It is scenario 3 that is most consistent with the data depicted in Fig. 1-2. Given that the physical climate system is strongly influenced by gases in the atmosphere that absorb and emit infrared radiation (e.g., H2O, CO2, CH4, etc.), and since the amounts of these species in the air depend to some extent (for some, a great extent) on the functioning of the biosphere, it is logical to view the climate of the Earth as a coupled physical, chemical, and biological entity. [Pg.441]

George DG, Maberly SC, Hewitt DP (2004) The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshw Biol 49 760-774... [Pg.94]

Only a small fraction of faecal contaminants contributed to the enviromnent through human and animal faeces reach new hosts to infect them. Many of the defecated microorganisms never reach the soil and/or water bodies, since faecal wastes are submitted to purification (water) and hygienization (solids) processes, which remove a fraction of the pathogens and indicators. An important fraction of those that reach either the soil or water are removed (adsorption to soil particles and suspended solids, followed by sedimentation) and/or inactivated by natural stressors (physical, chemical and biological) in soil and water bodies. [Pg.152]

Our interest in the synthesis of poly (amino acids) with modified backbones is based on the hypothesis that the replacement of conventional peptide bonds by nonamide linkages within the poIy(amino acid) backbone can significantly alter the physical, chemical, and biological properties of the resulting polymer. Preliminary results (see below) point to the possibility that the backbone modification of poly(amino acids) circumvents many of the limitations of conventional poly(amino acids) as biomaterials. It seems that backbone-modified poly (amino acids) tend to retain the nontoxicity and good biocompatibility often associated with conventional poly (amino acids)... [Pg.197]

Various physical, chemical, and biological methods have been used for the treatment of dye-containing wastewater. However, these conventional technologies have disadvantages like poor removal efficiency and high running cost. Therefore, low-cost sorbents which can bind dye molecules and be easily regenerated have been extensively searched and tested [3-7]. [Pg.161]

As a species that has evolved in such an aggressive environment we have developed mechanisms that both defend against oxidative damage and can undertake damage repair. Free radical generation in vivo has even been adopted as a mechanism to protect against physical, chemical and biological injury. [Pg.110]

Interfacial water molecules play important roles in many physical, chemical and biological processes. A molecular-level understanding of the structural arrangement of water molecules at electrode/electrolyte solution interfaces is one of the most important issues in electrochemistry. The presence of oriented water molecules, induced by interactions between water dipoles and electrode and by the strong electric field within the double layer has been proposed [39-41]. It has also been proposed that water molecules are present at electrode surfaces in the form of clusters [42, 43]. Despite the numerous studies on the structure of water at metal electrode surfaces using various techniques such as surface enhanced Raman spectroscopy [44, 45], surface infrared spectroscopy [46, 47[, surface enhanced infrared spectroscopy [7, 8] and X-ray diffraction [48, 49[, the exact nature of the structure of water at an electrode/solution interface is still not fully understood. [Pg.80]

Addressing the second question first leads to a critical constraint when thinking about new, more sustainable, technological developments, that is, the universal applicability of the laws of thermodynamics to aU physical, chemical and biological processes. A central and inescapable fact is the inevitability of waste formation. One statement of the second law of thermodynamics says that heat cannot be converted completely into work. Or, in other words, the energy output of work is always less than the energy transformed to accomplish it. A consequence of this is that, even in principle, it is impossible for any real process to proceed without the generation of some sort of waste. [Pg.7]

Cleanup of major oil spills may be accomplished by physical, chemical, and biological methods. In this activity, you will focus on bioremediation, which is a method of using natural organisms to break down contaminants at the site. [Pg.201]


See other pages where Physical, chemical, and biological is mentioned: [Pg.96]    [Pg.13]    [Pg.228]    [Pg.362]    [Pg.21]    [Pg.102]    [Pg.159]    [Pg.381]    [Pg.153]    [Pg.268]    [Pg.361]    [Pg.685]    [Pg.70]    [Pg.71]    [Pg.230]    [Pg.245]    [Pg.4]    [Pg.284]    [Pg.506]    [Pg.181]    [Pg.190]    [Pg.164]    [Pg.3]    [Pg.1]    [Pg.237]    [Pg.19]    [Pg.159]    [Pg.15]   


SEARCH



Biology physics and

Chemical and biological

Physical, chemical and biological processes involved in the degradation of pesticides

Physical-Chemical Factors and Biological Activities

Physical-chemical properties and qualities of biological products

© 2024 chempedia.info