Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coaxial phase

Figure 3.12 illustrates a circuit diagram of a single-phase coaxial cable. In the figure, the characteristic impedance of each section is defined as follows ... [Pg.306]

Circuit diagram of a single-phase coaxial cable. [Pg.306]

A widely used type of pump—mixer—settler, developed by IsraeH Mining Industries (IMI) (115), is shown in Figure 13a. A unit having capacity 8.3 m /min (2000 gal /min) has been used in phosphoric acid plants (116). The unique feature of this design is that the pumping device is not required to act as the mixer, and the two phases are dispersed by a separate impeller mounted on a shaft miming coaxially with the drive to the pump. [Pg.74]

Electrospray ionization (ESI) is ideally suited as a detection technique for the online interfacing of liquid-phase separations (HPLC and CE) to MS, because it facilitates the transfer of analytes from the liquid phase of the HPLC or CE column to the gas phase of the MS. Also, it allows the detection of high molecular weight species, such as peptides. Three interface designs have been developed in the past 18 years for coupling CE with MS. The first CE-MS interface, coaxial sheath flow, was introduced by Smith and his group in 1987 (Olivares et al., 1987) and was improved upon in later work (Smith et al., 1988). Coaxial sheath flow is formed using two concentric metal capillaries, whereby the CE terminus and the makeup flow line are inserted into the... [Pg.368]

NT-VS2 is not the only example of stabilization of particular compositions in IF and NT phases. Enhanced stability is shown by Na-intercalated IF-MoS2,300 Ag- and Au-intercalated coaxial nanotubes MoS2 and WS2.301 The reason of the stability enhancement is probably related to the fact that the IF and NT structures are always closed and no reactive edges are exposed to the hostile environment. [Pg.528]

Nanocarbon hybrids have recently been introduced as a new class of multifunctional composite materials [18]. In these hybrids, the nanocarbon is coated by a polymer or by the inorganic material in the form of a thin amorphous, polycrystalline or single-crystalline film. The close proximity and similar size domain/volume fraction of the two phases within a nanocarbon hybrid introduce the interface as a powerful new parameter. Interfacial processes such as charge and energy transfer create synergistic effects that improve the properties of the individual components and even create new properties [19]. We recently developed a simple dry wrapping method to fabricate a special class of nanocarbon hybrid, W03 /carbon nanotube (CNT) coaxial cable structure (Fig. 17.2), in which W03 layers act as an electrochromic component while aligned... [Pg.458]

When using PFT with a neutral selector, it is quite difficult to avoid any entrance of the chiral selector into the ionization source, particularly at a high pH, where EOF is important. The use of BGE at low pH and/or coated capillary to minimize EOF is therefore mandatory. However, the coaxial sheath gas, which generally assists the ionization process, leads to an aspirating phenomenon of the chiral selector in the MS direction. Javerfalk et al. were the first to apply PFT with a neutral methyl-/i-CD for the separation of racemic bupivacaine and ropivacaine with a polyacrylamide-coated capillary and an acidic pH buffer (pH 3). Cherkaoui et al. employed another neutral CD (HP-/1-CD) with a PVA-coated capillary for the analysis of amphetamines and their derivatives. To prevent a detrimental aspiration effect, analyses were carried out without nebulization pressure. Numerous other studies presented excellent results such as the enantioselective separation of adrenoreceptor antagonist drugs using tandem mass spectrometry (MS/MS) the separation of clenbuterol enantiomers after solid-phase extraction (SPE) of plasma samples or the use of CD dual system for the simultaneous chiral determination of amphetamine, methamphetamine, dimethamphetamine, and p-hydroxymethamphetamine in urine. [Pg.487]

Figure 6.1 shows the apparatus diagram. The diffusion flame burner consisted of an air plenum with an exit diameter of 22 mm, forced at a Strouhal number of 0.73 (100 Hz) by a single acoustic driver, and a coaxial fuel injection ring of diameter 24 mm, fed by a plenum forced by two acoustic drivers at either 100 Hz (single-phase injection) or 200 Hz (dual-phase injection). The fuel was injected circumferentially directly into the shear layer and roll-up region for the air vortices. In addition, this fuel injection was sandwiched between the central air flow and the external air entrainment. Thus the fuel injection was a thin cylindrical flow acted upon from both sides by air flow. [Pg.93]

Figure 5.6 Comparative segments from (a) conventional and (b) phase-sensitive 8-Hz optimized HMBC spectra of DP-2 recorded using a 3-mm sample positioned coaxially in a 5-mm gradient inverse triple resonance Varian Cold-probe . ... Figure 5.6 Comparative segments from (a) conventional and (b) phase-sensitive 8-Hz optimized HMBC spectra of DP-2 recorded using a 3-mm sample positioned coaxially in a 5-mm gradient inverse triple resonance Varian Cold-probe . ...
The first ESI design at the end of the 1980s proved to work properly as the HPLC interface with mobile phase flow rates between 1 and lOpL/min. Meanwhile, the development of the HPLC instrumentation and columns was oriented in the mL/min flow rate mode. In addition, the nebulization process based only on the application of an electrical field does not produce a stable spray from aqueous mobile phases. A modified ESI source, called ionspray, was then introduced [39], in which the nebulization of a liquid solution is pneumatically assisted by a coaxial flow of nitrogen (sheath gas) that allows the formation of a stable aerosol at mobile-phase flow rates between 10 and 500 pL/ min and the use of aqueous mobile phases. When working at higher flow rates (500-1000 pL/min), an additional nittogen flow rate can be used (auxiliary gas) to assist the desolvation of the droplets. This modified source is called turboionspray. [Pg.239]

Coaxial intergrowth is a paragenetic relation that describes crystals of two different species growing with a common axis the misfit ratios between the two crystals in the direction of the common axis are small, without exception. The formation of coaxial intergrowth can be understood to be one crystal conjunct to the other in an epitaxial relation, where both continue to grow. If a liquid of eutectic A-B component is solidified from one side (unidirectional solidification), crystals of the two phases A and B precipitate in dotted, columnar or lamellar (with common axis) form, and show unique textures for unidirectional solidification. This is a well known phenomenon in metallurgy. [Pg.145]

In atmospheric pressure chemical ionization, heat and a coaxial flow of N2 convert eluate into a fine mist from which solvent and analyte evaporate (Figure 22-19). Like chemical ionization in the ion source of a mass spectrometer, atmospheric pressure chemical ionization creates new ions from gas-phase reactions between ions and molecules. The distinguishing feature of this technique is that a high voltage is applied to a metal needle in the path of the aerosol. An electric corona (a plasma containing charged particles) forms around the needle,... [Pg.490]

The problem to be solved in this paragraph is to determine the rate of spread of the chromatogram under the following conditions. The gas and liquid phases flow in the annular space between two coaxial cylinders of radii ro and r2, the interface being a cylinder with the same axis and radius rx (0 r0 < r < r2). Both phases may be in motion with linear velocity a function of radial distance from the axis, r, and the solute diffuses in both phases with a diffusion coefficient which may also be a function of r. At equilibrium the concentration of solute in the liquid, c2, is a constant multiple of that in the gas, ci(c2 = acj) and at any instant the rate of transfer across the interface is proportional to the distance from equilibrium there, i.e. the value of (c2 - aci). The dispersion of the solute is due to three processes (i) the combined effect of diffusion and convection in the gas phase, (ii) the finite rate of transfer at the interface, (iii) the combined effect of diffusion and convection in the liquid phase. In what follows the equations will often be in sets of five, labelled (a),..., (e) the differential equations expression the three processes (i), (ii) (iii) above are always (b), (c) and (d), respectively equations (a) and (e) represent the condition that there is no flow over the boundaries at r = r0 and r = r2. [Pg.122]

The structure, crystallinity and phase of the films were studied by X-ray diffraction (Cu Ka filtered radiation) and by reflection and transmission high energy electron diffraction (RHEED and THEED), with 50 keV incident electron beams. The composition and the purity of the films was determined by Auger electron spectroscopy (AES). A cylindrical mirror analyser with a coaxial electron gun was placed at 30° with respect to the normal surface. [Pg.428]

We now check whether Eq. (1), with S /3 = e2/ and modified as above to account for finite propagation time, can explain our data. The unknown parameters are the resistance Rq and the effective environment noise temperature Tq. We checked that the impedance of the samples was frequency independent up to 1.2 GHz within 5%. Fig. 2 shows the best fits to the theory, Eq. (1), for all our data. The four curves lead to Ro = 42 12, in agreement with the fact that the electromagnetic environment (amplifier, bias tee, coaxial cable, sample holder) was identical for the two samples. We have measured the impedance Zenv seen by the sample. Due to impedance mismatch between the amplifier and the cable, there are standing waves along the cable. This causes Zenv to be complex with a phase that varies with frequency. We measured that the modulus Zenv varies between 30 12 and 70 12 within the detection bandwidth, in reasonable agreement with f o = 42 12 extracted from the fits. [Pg.281]

In continuos flow FAB (CFFAB) [7,24,47] the analyte-matrix mixture is delivered continuously to the probe tip through a fused silica capillary which terminates at the probe tip. This configuration provides a means of coupling liquid phase separation techniques with FAB-MS. Addition of the matrix to the analyte solution is accomplished by one of two methods. (1) The matrix is added at concentrations of 5-10% to the mobile phase, and the column effluent is directly fluxed into the CFFAB ion source or (2) column effluent and matrix solution are delivered independently to the probe tip by a coaxial arrangement of two concentric fused silica capillaries. [Pg.291]


See other pages where Coaxial phase is mentioned: [Pg.243]    [Pg.547]    [Pg.661]    [Pg.45]    [Pg.816]    [Pg.292]    [Pg.19]    [Pg.468]    [Pg.292]    [Pg.11]    [Pg.393]    [Pg.479]    [Pg.491]    [Pg.225]    [Pg.315]    [Pg.234]    [Pg.214]    [Pg.303]    [Pg.496]    [Pg.256]    [Pg.122]    [Pg.260]    [Pg.331]    [Pg.130]    [Pg.36]    [Pg.153]    [Pg.165]    [Pg.491]    [Pg.291]    [Pg.321]    [Pg.322]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Coaxial

© 2024 chempedia.info