Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pentaerythritol oxide

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

The base-catalyzed reaction of acetaldehyde with excess formaldehyde [50-00-0] is the commercial route to pentaerythritol [115-77-5]. The aldol condensation of three moles of formaldehyde with one mole of acetaldehyde is foUowed by a crossed Cannizzaro reaction between pentaerythrose, the intermediate product, and formaldehyde to give pentaerythritol (57). The process proceeds to completion without isolation of the intermediate. Pentaerythrose [3818-32-4] has also been made by condensing acetaldehyde and formaldehyde at 45°C using magnesium oxide as a catalyst (58). The vapor-phase reaction of acetaldehyde and formaldehyde at 475°C over a catalyst composed of lanthanum oxide on siHca gel gives acrolein [107-02-8] (59). [Pg.50]

Polyhydric alcohol mercaptoalkanoate esters are prepared by reaction of the appropriate alcohols and thioester using -toluenesulfonic acid catalyst under nitrogen and subsequent heating (16,17). Organotin mercapto esters are similarly produced by reaction of the esters with dibutyltin oxide (18). Pentaerythritol can be oxidized to 2,2-bis(hydroxymethyl)hydracryhc acid [2831-90-5] C H qO, ... [Pg.464]

Exothermic oxidation—reduction reactions provide the energy released in both propellant burning and explosive detonation. The reactions are either internal oxidation—reductions, as in the decomposition of nitroglycerin and pentaerythritol tetranitrate, or reactions between discrete oxidizers and fuels in heterogeneous mixtures. [Pg.5]

This method for the preparation of cyclobutanone via oxaspiropentane is an adaptation of that described by Salaiin and Conia. The previously known large-scale preparations of cyclobutanone consist of the reaction of the hazardous diazomethane with ketene, the oxidative degradation or the ozonization in presence of pjrridine of methylenecyclobutane prepared from pentaerythritol, or the recently reported dithiane method of Corey and Seebach, which has the disadvantage of producing an aqueous solution of the highly water-soluble cyclobutanone. A procedure involving the solvolytic cyclization of 3-butyn-l-yl trifluoro-methanesulfonate is described in Org. Syn., 54, 84 (1974). [Pg.40]

The effect of iron oxide, zinc oxide and red lead on the percentage of D areas has been determined. Three vehicles were used, a pentaerythritol alkyd, a tung oil phenolic and an epoxy polyamide" . In the case of iron oxide, the D areas increased with all three vehicles in contrast zinc oxide had very little effect on the percentage D areas. However, red lead when dispersed in the alkyd and tung oil vehicles behaved in a similar way to iron oxide, whereas red lead when dispersed in the epoxypolyamide vehicle had very little effect. [Pg.599]

Films of a pentaerythritol alkyd, a tung oil phenolic and an epoxypolyamide pigmented with iron oxide in the range 5-7% p.v.c. were exposed to solutions of potassium chloride in the range 0.0001-2.0 m. It was found that in all cases the resistance of the films steadily decreased as the concentration of the electrolyte increased. Since the resistances of the films were at no time independent of the concentration of the electrolyte, it was concluded that the Donnan equilibrium was not operative and that the resistance of the films were controlled by the penetration of electrolyte moving under a concentration gradient. [Pg.604]

When a few drops of anhydrous perchloric acid are added to ethanol, there is an immediate detonation. With ethylene glycol, glycerine and pentaerythritol, this acid forms liquids that detonate as soon as they are moved from one container to the next. The same is true for glycerine, when handled when in the presence of perchloric acid and lead (II) oxide. [Pg.251]

Four Ru(tpy) + units with or without carborane-type substituents have been linked to a pentaerythritol core. The resulting compounds exhibit only one cyclic voltammetric wave assigned to the simultaneous oxidation of the four metal-based centers [33]. [Pg.214]

The most common polyfunctional alcohol used is pentaerythritol, but a base is also required to complete the cure system, magnesium and calcium oxide giving more controlled cure rates than stronger bases. [Pg.100]

Nitro compounds, like quinones, terminate chains in oxidizing compounds where hydroperoxyl radicals are formed. This was proved for the oxidation of polyatomic esters [37] and PP [38], Nitrobenzene retards the initiated oxidation of the following esters tetrapropionate of pentaerythritol, propionate of 2,2-dimethylbutanol, and dipropionate of 2,2-dimethylpro-panediol terminating chains by the reaction with peroxyl radicals [37]. The hydroperoxyl radicals were supposed to be formed as a result of the following reactions ... [Pg.577]

The best large-scale preparation of cyclobutanone is the reaction of diazomethane with ketene.2 It requires a ketene generator and implies handling of large quantities of the potentially hazardous diazo compound. A more frequently used method for the preparation of cyclobutanone starts from pentaerythritol, the final step being the oxidative degradation of methylenecyclobutane,3,4 which can also be prepared from other precursors.5 A general survey of all methods used to obtain cyclobutanone has been published.6,7... [Pg.41]

Additional hyperbranched polyesters based on either di-, tri-, or polycarboxylic acids or di-, tri-, or polyols are described by Bruchman et al. (1). For example, the reaction product of adipic acid, pentaerythritol and 1,4-cyclohexanedi-methanol, was prepared using di-n-butyltin oxide as catalyst and then post-reacted with selected diisocyanates and used as a paint additive. [Pg.3]

Monoethanolamine Ethylamine Ethylene Glycol Vinyl Fluoride Ethylene Glycol Calcium Phosphate Isobutylamine Monoisopropanolamine Isopropylamine Methylamne Methylcrazine Nitric Oxide Pentaerythritol... [Pg.68]

The advantages of this new process are the high n/i ratio and the low formation of heavy ends (1.5%) and alcohols (1%) without any formation of formates. In the original cobalt-based high-pressure process the n/i ratio was 67/33, with substantial formation of heavy ends (6.7%), alcohols (6.6%) and pentylformates (4.2%).350 The n-valeraldehyde product is oxidized with molecular oxygen to n-valeric acid, the trimethylolpropane, pentaerythritol, or dipentaerythritol esters of which are used as lubricants.350... [Pg.142]

Ethyl alcohol has been made by the hydration of ethylene (9) since 1930. Like isopropyl alcohol, part of the output is used as a solvent, but most is converted to other oxygenated chemicals. Its most important raw material use is conversion to acetaldehyde by catalytic air oxidation. Acetaldehyde, in turn, is the raw material source of acetic acid, acetic anhydride, pentaerythritol, synthetic n-butyl alcohol (via aldol condensation), butyraldehyde, and other products. Butyraldehyde is the source of butyric acid, polyvinyl butyral resin, and 2-ethylhexanol (octyl alcohol). The last-named eight-carbon alcohol is based on the aldol condensation of butyraldehyde and is used to make the important plasticizer di-2-ethylhexyl phthalate. A few examples of the important reactions of acetaldehyde are as follows ... [Pg.294]

The largest and oldest chemical intermediate use for methanol is formaldehyde. Over half of the methanol currently consumed in the world goes into formaldehyde production. Formaldehyde is produced by the catalytic oxidation or the oxidative dehydrogenation of methanol The major outlet for formaldehyde is amino and phenolic resins. These resins are in turn used in the manufacture of adhesives for wood products, molding compounds, binders for thermal insulation and foundry resins. Formaldehyde is also consumed in the production of acetal resins, pentaerythritol, neopentyl glycol, trimethylolpropane, methylenediphenyldiisocyanate (MDI), and textile treating resins. [Pg.31]

Other ingredients that may be found in smokeless powders include camphor, carbazole, cresol, diethyleneglycoldinitrate (DEGDN), dimethylse-bacate, dinitrocresol, di-normal-propyl adipate, 2.4-dinitrodiphenylamine, PETN, TNT, RDX, acaroid resin, gum arabic, synthetic resins, aluminum, ammonium chlorate/oxalate/perchlorate, pentaerythritol dioleate, oxamide, lead carbonate/salicylate/stearate, magnesium oxide, sodium aluminum fluoride, sodium carbonate/bicarbonate, petrolatum, dioctylphthalate, stannic oxide, potassium cyrolate, triphenyl bismuth. [Pg.66]

Within the area of natural fibers, wool has the highest inherent nonflammability. It exhibits a relatively high LOI of about 25 vol % and low flame temperature of about 680°C.25 The inherent FR activity of the fiber can be associated with char-forming reactions which may be enhanced by a number of flame retardants. Based on their fundamental work to enhance char formation, Horrocks and Davies offer intumescent formulations based on MP to flame-retarded wool.61 From TGA and SEM characterization, they proposed a comprehensive model on the mechanism of protection via an intumescent process, which involves the formation of cross-linked char by P-N and P-0 bonds resistant to oxidation. More recently, they used spirocyclic pentaerythritol phosphoryl chloride (SPDPC) phosphorylated wool to achieve intumescent wool which exhibits large char expansion and good flame retardancy.62... [Pg.142]

The large group of inhibitors of free radical chain reactions are frequently used in combination with metal salts or organometallic stabilizers. They are amines, sulfur- or phosphorus-containing compounds, phenols, alcohols, or chelates. Aromatic phosphites at about 1 p.p.r. chelate have undesirable metal impurities and inhibit oxidative free radical reactions. Some of the more popular are pentaerythritol, sorbitol, melamine, dicyan-diamide, and benzoguanamine. Their synergistic effect is utilized in vinyl floors where low cost is imperative. [Pg.8]


See other pages where Pentaerythritol oxide is mentioned: [Pg.512]    [Pg.68]    [Pg.134]    [Pg.480]    [Pg.84]    [Pg.463]    [Pg.396]    [Pg.478]    [Pg.603]    [Pg.138]    [Pg.30]    [Pg.676]    [Pg.354]    [Pg.183]    [Pg.285]    [Pg.92]    [Pg.119]    [Pg.480]    [Pg.38]    [Pg.2]    [Pg.393]    [Pg.396]    [Pg.341]    [Pg.8]    [Pg.399]    [Pg.169]    [Pg.172]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Pentaerythritol

© 2024 chempedia.info