Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation of propylene

The direct oxidation of propylene using air or oxygen produces acrolein. Acrolein may further he oxidized to acrylic acid, which is a monomer for polyacrylic resins. [Pg.214]

The following data given in Tables 16.15, 16.16 and 16.17 on the oxidation of propylene over bismuth molybdate catalyst were obtained at three temperatures, 350,375, and 390°C (Watts, 1994). [Pg.297]

One model proposed for the rate of propylene disappearance, rp, as a function of the oxygen concentration, C0, the propylene concentration, Cp, and the stoichiometric number, n, is [Pg.297]

The objective is to determine the parameters and their standard errors by the Gauss-Newton method for each temperature and then check to see if the parameter estimates obey Arrhenius type behavior. [Pg.298]

The parameter values were then plotted versus the inverse temperature and were found to follow an Arrhenius type relationship [Pg.298]

Subsequently, Watts performed a parameter estimation by using the data from all temperatures simultaneously and by employing the formulation of the rate constants as in Equation 16.19. The parameter values that they found as well as their standard errors are reported in Table 16.18. It is noted that they found that the residuals from the fit were well behaved except for two at 375°C. These residuals were found to account for 40% of the residual sum of squares of deviations between experimental data and calculated values. [Pg.299]


The attack of OH obeys the Markovnikov rule. Higher alkenes are oxidized to ketones and this unique oxidation of alkenes has extensive synthetic appli-cations[23]. The oxidation of propylene affords acetone. Propionaldehyde is... [Pg.22]

Poly (methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula ... [Pg.1013]

Production of acetone by dehydrogenation of isopropyl alcohol began in the early 1920s and remained the dominant production method through the 1960s. In the mid-1960s virtually all United States acetone was produced from propylene. A process for direct oxidation of propylene to acetone was developed by Wacker Chemie (12), but is not beheved to have been used in the United States. However, by the mid-1970s 60% of United States acetone capacity was based on cumene hydroperoxide [80-15-9], which accounted for about 65% of the acetone produced. [Pg.94]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Virtually all of the acryUc acid produced in the United States is made by the oxidation of propylene via the intermediacy of acrolein. [Pg.124]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

The yield of acrylonitrile based on propylene is generally lower than the yield of acryhc acid based on the dkect oxidation of propylene. Hence, for the large volume manufacture of acrylates, the acrylonitrile route is not attractive since additional processing steps are involved and the ultimate yield of acrylate based on propylene is much lower. Hydrolysis of acrylonitrile can be controUed to provide acrylamide rather than acryhc acid, but acryhc acid is a by-product in such a process (80). [Pg.155]

Liquid-Phase Oxidation of Acrolein. As discussed before, the most attractive process for the manufacture of acrylates is based on the two-stage, vapor-phase oxidation of propylene. The second stage involves the oxidation of acrolein. Considerable art on the Hquid-phase oxidation of acrolein (17) is available, but this route caimot compete with the vapor-phase technology. [Pg.156]

There are currentiy two principal processes used for the manufacture of monomeric acryhc esters the semicatalytic Reppe process and the propylene oxidation process. The newer propylene oxidation process is preferred because of economy and safety. In this process acroleia [107-02-8] is first formed by the catalytic oxidation of propylene vapor at high temperature ia the preseace of steam. The acroleia is thea oxidi2ed to acryhc acid [79-10-7]. [Pg.164]

Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31). Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31).
Oxidation of a glycol can lead to a variety of products. Periodic acid quantitatively cleaves 1,2-glycols to aldehydes and is used as an analysis method for glycols (12,13). The oxidation of propylene glycol over Pd/C modified with Pb, Bi, or Te forms a mixture of lactic acid, hydroxyacetone, and pymvic acid (14). Air oxidation of propylene glycol using an electrolytic crystalline silver catalyst yields pymvic aldehyde. [Pg.366]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

Other possible chemical synthesis routes for lactic acid include base-cataly2ed degradation of sugars oxidation of propylene glycol reaction of acetaldehyde, carbon monoxide, and water at elevated temperatures and pressures hydrolysis of chloropropionic acid (prepared by chlorination of propionic acid) nitric acid oxidation of propylene etc. None of these routes has led to a technically and economically viable process (6). [Pg.513]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Propylene Process. The oxidation of propylene with nitric acid is a two-step process (22—29). Propylene reacts with Hquid NO2 to produce an... [Pg.458]

A second process has two steps. The first step is oxidation of propylene [115-07-1] to acrolein and the second step is reduction of acrolein to ahyl alcohol by a hydrogen transfer reaction, using isopropyl alcohol (25). [Pg.74]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Acrylonitrile. Catalytic oxidation of propylene in the presence of ammonia (qv) yields acrylonitrile (95). [Pg.129]

Process flow sheets and process descriptions given herein are estimates of the various commercial processes. There are also several potential commercial processes, including variations on the chlorohydrin process, variations on the hydroperoxide process, and direct oxidation of propylene. [Pg.136]

Direct Oxidation of Propylene to Propylene Oxide. Comparison of ethylene (qv) and propylene gas-phase oxidation on supported silver and silver—gold catalysts shows propylene oxide formation to be 17 times slower than ethylene oxide (qv) formation and the CO2 formation in the propylene system to be six times faster, accounting for the lower selectivity to propylene oxide than for ethylene oxide. Increasing gold content in the catalyst results in increasing acrolein selectivity (198). In propylene oxidation a polymer forms on the catalyst surface that is oxidized to CO2 (199—201). Studies of propylene oxide oxidation to CO2 on a silver catalyst showed a rate oscillation, presumably owing to polymerization on the catalyst surface upon subsequent oxidation (202). [Pg.141]

Gas-phase oxidation of propylene using oxygen in the presence of a molten nitrate salt such as sodium nitrate, potassium nitrate, or lithium nitrate and a co-catalyst such as sodium hydroxide results in propylene oxide selectivities greater than 50%. The principal by-products are acetaldehyde, carbon monoxide, carbon dioxide, and acrolein (206—207). This same catalyst system oxidizes propane to propylene oxide and a host of other by-products (208). [Pg.141]

Propylene oxide is also produced in Hquid-phase homogeneous oxidation reactions using various molybdenum-containing catalysts (209,210), cuprous oxide (211), rhenium compounds (212), or an organomonovalent gold(I) complex (213). Whereas gas-phase oxidation of propylene on silver catalysts results primarily in propylene oxide, water, and carbon dioxide as products, the Hquid-phase oxidation of propylene results in an array of oxidation products, such as propylene oxide, acrolein, propylene glycol, acetone, acetaldehyde, and others. [Pg.141]

Noncatalytic oxidation of propylene to propylene oxide is also possible. Use of a small amount of aldehyde in the gas-phase oxidation of propylene at 200—350°C and up to 6900 kPa (1000 psi) results in about 44% selectivity to propylene oxide. About 10% conversion of propylene results (214—215). Photochemical oxidation of propylene with oxygen to propylene oxide has been demonstrated in the presence of a-diketone sensitizers and an aprotic solvent (216). [Pg.141]

Electrochemical Process. Applying an electrical current to a brine solution containing propylene results in oxidation of propylene to propylene oxide. The chemistry is essentially the same as for the halohydrin process. AH of the chemistry takes place in one reactor. Most of the reported work uses sodium or potassium bromide as the electrolyte. Bromine, generated from bromide ions at the anode, reacts with propylene and water to form propylene bromohydrin. Hydroxide generated at the cathode then reacts with the bromohydrin to yield propylene oxide (217—219). The net reaction involves transfer of two electrons ... [Pg.141]

Mixed Metal Oxides and Propylene Ammoxidation. The best catalysts for partial oxidation are metal oxides, usually mixed metal oxides. For example, phosphoms—vanadium oxides are used commercially for oxidation of / -butane to give maleic anhydride, and oxides of bismuth and molybdenum with other components are used commercially for oxidation of propylene to give acrolein or acrylonitrile. [Pg.180]

Other Derivatives and Reactions. The vapor-phase condensation of ethanol to give acetone has been well documented in the Hterature (376—385) however, acetone is usually obtained as a by-product from the cumene (qv) process, by the direct oxidation of propylene, or from 2-propanol. [Pg.416]

These enable temperature control with built-in exchangers between the beds or with pumparound exchangers. Converters for ammonia, 80.3, cumene, and other processes may employ as many as five or six beds in series. The Sohio process for vapor-phase oxidation of propylene to acrylic acid uses hvo beds of bismuth molybdate at 20 to 30 atm (294 to 441 psi) and 290 to 400°C (554 to 752°F). Oxidation of ethylene to ethylene oxide also is done in two stages with supported... [Pg.2102]

After the preliminary tests are made on a promising catalyst and some insight gained on the process, it is time to do a kinetic study and model development. The method of a kinetic study can be best explained on an actual industrial problem. Because more can be learned from a failure than from a success, the oxidation of propylene to acrolein is an instructive attempt at process development. (Besides, to get permission to publish a success is more difficult than to solve the problem itself) Some details of the development work follow in narrative form to make the story short and to avoid embarrassing anyone. [Pg.124]

Degenerate Explosion it was a free radical autocatalytic process and control was difficult, but manageable. The main disadvantage was that it produced as much or more acrolein as propylene oxide. Because no market existed for acrolein at that time, the project was abandoned. Within two years, the acrylic market developed and a new project was initiated to make acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene. [Pg.125]

The use of peroxides for the oxidation of propylene produces propylene oxide. This compound is also obtained via a chlorohydrination of propylene followed by epoxidation. [Pg.215]

The main route to produce acrolein is through the catalyzed air or oxygen oxidation of propylene. [Pg.215]

Much work has been invested to reveal the mechanism by which propylene is catalytically oxidized to acrolein over the heterogeneous catalyst surface. Isotope labeling experiments by Sachtler and DeBoer revealed the presence of an allylic intermediate in the oxidation of propylene to acrolein over bismuth molybdate. In these experiments, propylene was tagged once at Ci, another time at C2 and the third time at C3. [Pg.215]

A proposed mechanism for the oxidation of propylene to acrolein is by a first step abstraction of an allylic hydrogen from an adsorbed propylene by an oxygen anion from the catalytic lattice to form an allylic intermediate ... [Pg.216]

Both fixed and fluid-bed reactors are used to produce acrylonitrile, but most modern processes use fluid-bed systems. The Montedison-UOP process (Figure 8-2) uses a highly active catalyst that gives 95.6% propylene conversion and a selectivity above 80% for acrylonitrile. The catalysts used in ammoxidation are similar to those used in propylene oxidation to acrolein. Oxidation of propylene occurs readily at... [Pg.218]

The direct oxidation of propylene with oxygen is a noncatalytic reaction occurring at approximately 90-140°C and 15-20 atmospheres. In this reaction hydrogen peroxide is coproduced with acetone. At 15% isopropanol conversion, the approximate yield of acetone is 93% and that for H2O2 is 87% ... [Pg.229]

Much like the oxidation of propylene, which produces acrolein and acrylic acid, the direct oxidation of isobutylene produces methacrolein and methacrylic acid. The catalyzed oxidation reaction occurs in two steps due to the different oxidation characteristics of isobutylene (an olefin) and methacrolein (an unsaturated aldehyde). In the first step, isobutylene is oxidized to methacrolein over a molybdenum oxide-based catalyst in a temperature range of 350-400°C. Pressures are a little above atmospheric ... [Pg.250]


See other pages where Oxidation of propylene is mentioned: [Pg.528]    [Pg.94]    [Pg.102]    [Pg.148]    [Pg.158]    [Pg.180]    [Pg.75]    [Pg.213]    [Pg.214]    [Pg.177]    [Pg.186]   
See also in sourсe #XX -- [ Pg.520 ]




SEARCH



Propylene oxide

Propylene oxide oxidation

© 2024 chempedia.info