Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrolein selectivity

Today the most efficient catalysts are complex mixed metal oxides that consist of Bi, Mo, Fe, Ni, and/or Co, K, and either P, B, W, or Sb. Many additional combinations of metals have been patented, along with specific catalyst preparation methods. Most catalysts used commercially today are extmded neat metal oxides as opposed to supported impregnated metal oxides. Propylene conversions are generally better than 93%. Acrolein selectivities of 80 to 90% are typical. [Pg.123]

Direct Oxidation of Propylene to Propylene Oxide. Comparison of ethylene (qv) and propylene gas-phase oxidation on supported silver and silver—gold catalysts shows propylene oxide formation to be 17 times slower than ethylene oxide (qv) formation and the CO2 formation in the propylene system to be six times faster, accounting for the lower selectivity to propylene oxide than for ethylene oxide. Increasing gold content in the catalyst results in increasing acrolein selectivity (198). In propylene oxidation a polymer forms on the catalyst surface that is oxidized to CO2 (199—201). Studies of propylene oxide oxidation to CO2 on a silver catalyst showed a rate oscillation, presumably owing to polymerization on the catalyst surface upon subsequent oxidation (202). [Pg.141]

Propene is an intermediate utilized in the chemical and pharmaceutical industries. The partial oxidation of propene on cuprous oxide (CU2O) yields acrolein as a thermodynamically imstable intermediate, and hence has to be performed under kinetically controlled conditions [37]. Thus in principle it is a good test reaction for micro reactors. The aim is to maximize acrolein selectivity while reducing the other by-products CO, CO2 and H2O. Propene may also react directly to give these products. The key to promoting the partial oxidation at the expense of the total oxidation is to use the CU2O phase and avoid having the CuO phase. [Pg.316]

Another important bulk chemical that could be derived from glycerol is acrylic acid (Craciun et al., 2005 Shima and Takahashi, 2006 Dubois et al., 2006). Shima and Takahashi (2006) reported a complete process for acrylic acid production involving the steps of glycerol dehydration in a gas phase followed by the application of a gas phase oxidation reaction to a gaseous reaction product formed by the dehydration reaction. Dehydration of glycerol could lead to commercially viable production of acrolein, which is an important and versatile intermediate for the production of acrylic acid esters, superabsorber polymers or detergents (Ott et al., 2006). Sub- and supercritical water have been applied by Ott et al. (2006) as the reaction media for glycerol dehydration, but the conversion and acrolein selectivities that have been achieved so far are not satisfactory for an economical process. [Pg.91]

Table 4 Acrolein selectivities in partial oxidation of propene... Table 4 Acrolein selectivities in partial oxidation of propene...
This coherent reaction network clearly demonstrates the in ortance of the 30-40 kJ mole selectivity limit. When it is exceeded, as is the case with propane oxidation to acrolein, selectivity declines drastically. Similarly the accnmmulated data for propane and propene ammoxidation [27,28] to acrylonitrile indicate selectivities at 30% conversion of 50% and 85% respectively. These data are consistent with the 41 kJ mole difference in bond enthalpies shown in scheme 2 for propane and propene. [Pg.1102]

The catalyst is of crucial importance in making acrolein selectively. Details on catalysts are discussed later. No detailed information on the acrolein process employed commercially has been published. [Pg.175]

The representative 2-alkenal adducts are summarized in Figure 6.4. The reactions of lysine with 2-alkenals have been mainly studied with acrolein, crotonaldehyde, and 2-nonenal. Similar to other a,P-unsaturated aldehydes, acrolein selectively reacts with the cysteine, histidine, and lysine residues of proteins. The primary products are their 3-substituted propanals (1) (Figure 6.4a). These p-substituted propanals or Schiff s base crosslinks had been suggested as the predominant acrolein-lysine adducts however, the major product formed upon the reaction of acrolein with a protein was identified to be a novel lysine product, A -(3-formyl-3,4-dehydropiperidino) lysine (FDP-lysine) (2), which requires attachment of two acrolein molecules to one lysine side chain (Uchida et al, 1998b). This and the fact that crotonaldehyde also forms a similar FDP-type adduct, A -(2,5-dimethyl-3-formyl-3,4-dehydropiperidino) lysine (dimethyl-FDP-lysine) (Ichihashi et al., 2001), suggest that this type of condensation reaction is characteristic of the reaction of 2-alkenals with primary amines. Indeed, upon reaction with a lysine derivative, other 2-alkenals, such as... [Pg.123]

Oxide catalyst Surface area (m= -g- ) Glycerol conversion (%) Acrolein selectivity (%) Hydroxyacetone selectivity (%)... [Pg.793]

The vapor-phase reduction of acrolein with isopropyl alcohol in the presence of a mixed metal oxide catalyst yields aHyl alcohol in a one-pass yield of 90.4%, with a selectivity (60) to the alcohol of 96.4%. Acrolein may also be selectively reduced to yield propionaldehyde by treatment with a variety of reducing reagents. [Pg.124]

Production of Acrolein Dimer. Acting as both the diene and dienoplule, acrolein undergoes a Diels-Alder reaction with itself to produce acrolein dimer, 3,4-dihydro-2-formyl-2id-pyran, CgHg02 [100-73-2], At room temperature the rate of dimerization is very slow. However, at elevated temperatures and pressures the dimer may be produced in single-pass yields of 33% with selectivities greater than 95%. [Pg.128]

Propylene Oxidation. The propylene oxidation process is attractive because of the availabihty of highly active and selective catalysts and the relatively low cost of propylene. The process proceeds in two stages giving first acrolein and then acryUc acid (39) (see Acrolein and derivatives). [Pg.152]

Single-reaction-step processes have been studied. However, higher selectivity is possible by optimizing catalyst composition and reaction conditions for each of these two steps (40,41). This more efficient utilization of raw material has led to two separate oxidation stages in all commercial faciUties. A two-step continuous process without isolation of the intermediate acrolein was first described by the Toyo Soda Company (42). A mixture of propylene, air, and steam is converted to acrolein in the first reactor. The effluent from the first reactor is then passed directiy to the second reactor where the acrolein is oxidized to acryUc acid. The products are absorbed in water to give about 30—60% aqueous acryUc acid in about 80—85% yield based on propylene. [Pg.152]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Miscellaneous Other Herbicides. The herbicides in this group are not readily included in any of the preceding groups. Acrolein [107-02-8] (2-propenal) is used as a contact, aquatic herbicide. Sethoxydim, clethodim, and tridiphane are used for selective, post-emergence weed control. [Pg.54]

AHyl alcohol can be easily oxidized to yield acrolein [107-02-8] and acryhc acid [79-10-7]. In an aqueous potassium hydroxide solution of RuQ., aHyl alcohol is oxidized by a persulfate such as K2S20g at room temperature, yielding acryhc acid in 45% yield (29). There are also examples of gas-phase oxidation reactions of ahyl alcohol, such as that with Pd—Cu or Pd—Ag as the catalyst at 150—200°C, in which ahyl alcohol is converted by 80% and acrolein and acryhc acid are selectively produced in 83% yield (30). [Pg.74]

Gas-phase oxidation of propylene using oxygen in the presence of a molten nitrate salt such as sodium nitrate, potassium nitrate, or lithium nitrate and a co-catalyst such as sodium hydroxide results in propylene oxide selectivities greater than 50%. The principal by-products are acetaldehyde, carbon monoxide, carbon dioxide, and acrolein (206—207). This same catalyst system oxidizes propane to propylene oxide and a host of other by-products (208). [Pg.141]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

Metliylpyridine can also be prepared by the condensation of acrolein and ammonia. Yields of 40—50% are obtained with pyridine as a by-product. Higher yields have been claimed when both propionaldehyde and acrolein have been used. A recent U.S. patent claims better selectivity if the cyclization is carried out in the presence of 2eohtes (3). [Pg.49]

On the second startup no ignition in the bottom occurred, but it was observed here also that a significant drop in oxygen concentration occurred between the reactor bottom and the heat exchanger, without loss of acrolein concentration. The homogeneous reaction also produced acrolein, just in much lower selectivity. Then, on the third day of... [Pg.131]

Run a preliminary UHF/ST0-3G Pop=NahjralOrbi1al job on triplet acrolein to generate and examine the starting orbitals and their symmetries. Select those that will make up the active space you will want to create an active... [Pg.228]

Attenlion should be drawn to ihe use of tin oxide systems as heterogeneous catalysts. The oldest and mosi extensively patented systems are the mixed lin-vanadium oxide catalysis for the oxidation of aromatic compounds such as benzene, toluene, xylenes and naphthalene in the. synthesis of organic acids and acid anhydride.s. More recenily mixed lin-aniimony oxides have been applied lo the selective oxidaiion and ammoxidaiion of propylene to acrolein, acrylic acid and acrylonilrile. [Pg.385]

The carbo-Diels-Alder reaction of acrolein with butadiene (Scheme 8.1) has been the standard reaction studied by theoretical calculations in order to investigate the influence of Lewis acids on the reaction course and several papers deal with this reaction. As an extension of an ab-initio study of the carbo-Diels-Alder reaction of butadiene with acrolein [5], Houk et al. investigated the transition-state structures and the origins of selectivity of Lewis acid-catalyzed carbo-Diels-Alder reactions [6]. Four different transition-state structures were considered (Fig. 8.4). Acrolein can add either endo (N) or exo (X), in either s-cis (C) or s-trans (T), and the Lewis acid coordinates to the carbonyl in the molecular plane, either syn or anti to the alkene. [Pg.305]

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

The endo exo selectivity for the Lewis acid-catalyzed carbo-Diels-Alder reaction of butadiene and acrolein deserves a special attention. The relative stability of endo over exo in the transition state accounts for the selectivity in the Diels-Alder cycloadduct. The Lewis acid induces a strong polarization of the dienophile FMOs and change their energies (see Fig. 8.2) giving rise to better interactions with the diene, and for this reason, the role of the possible secondary-orbital interaction must be considered. Another possibility is the [4 + 3] interaction suggested by Singleton... [Pg.308]

Both fixed and fluid-bed reactors are used to produce acrylonitrile, but most modern processes use fluid-bed systems. The Montedison-UOP process (Figure 8-2) uses a highly active catalyst that gives 95.6% propylene conversion and a selectivity above 80% for acrylonitrile. The catalysts used in ammoxidation are similar to those used in propylene oxidation to acrolein. Oxidation of propylene occurs readily at... [Pg.218]

Acetone can also he coproduced with allyl alcohol in the reaction of acrolein with isopropanol. The reaction is catalyzed with an MgO and ZnO catalyst comhination at approximately 400°C and one atmosphere. It appears that the hydrogen produced from the dehydrogenation of isopropanol and adsorbed on the catalyst surface selectively hydrogenates the carhonyl group of acrolein ... [Pg.230]


See other pages where Acrolein selectivity is mentioned: [Pg.226]    [Pg.155]    [Pg.240]    [Pg.251]    [Pg.93]    [Pg.426]    [Pg.54]    [Pg.341]    [Pg.430]    [Pg.793]    [Pg.793]    [Pg.393]    [Pg.226]    [Pg.155]    [Pg.240]    [Pg.251]    [Pg.93]    [Pg.426]    [Pg.54]    [Pg.341]    [Pg.430]    [Pg.793]    [Pg.793]    [Pg.393]    [Pg.153]    [Pg.182]    [Pg.320]    [Pg.36]    [Pg.7]    [Pg.13]    [Pg.254]    [Pg.308]    [Pg.51]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Acrolein

Acrolein catalytic selectivity

Acroleine

© 2024 chempedia.info