Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation hydrocarbons from

However, such a level can still be considered too high for vehicles having 3-way catalytic converters. In fact, results observed in the United States (Benson et al., 1991) and given in Figure 5.20 show that exhaust pollutant emissions, carbon monoxide, hydrocarbons and nitrogen oxides, increase from 10 to 15% when the sulfur level passes from 50 ppm to about 450 ppm. This is explained by an inhibiting action of sulfur on the catalyst though... [Pg.252]

Figure Bl.25.2 shows the XPS spectra of two organoplatinum complexes which contain different amounts of chlorine. The spectrum shows the peaks of all elements expected from the compounds, the Pt 4f and 4d doublets (the 4f doublet is iimesolved due to the low energy resolution employed for broad energy range scans). Cl 2p and Cl 2s, N Is and C Is. Flowever, the C Is caimot be taken as characteristic for the complex only. All surfaces that have not been cleaned by sputtermg or oxidation in the XPS spectrometer contain carbon. The reason is that adsorbed hydrocarbons from the atmosphere give the optimum lowering of the surface free energy and hence, all surfaces are covered by hydrocarbon fragments [9]. Figure Bl.25.2 shows the XPS spectra of two organoplatinum complexes which contain different amounts of chlorine. The spectrum shows the peaks of all elements expected from the compounds, the Pt 4f and 4d doublets (the 4f doublet is iimesolved due to the low energy resolution employed for broad energy range scans). Cl 2p and Cl 2s, N Is and C Is. Flowever, the C Is caimot be taken as characteristic for the complex only. All surfaces that have not been cleaned by sputtermg or oxidation in the XPS spectrometer contain carbon. The reason is that adsorbed hydrocarbons from the atmosphere give the optimum lowering of the surface free energy and hence, all surfaces are covered by hydrocarbon fragments [9].
Pollution control such as the reduction of nitrogen oxides, halocarbons and hydrocarbons from flue gases [37] is another important field of plasma-assisted chemistry using non-thennal plasmas. The efficiency of plasma chemical reactions can be enhanced by introducing catalysts into the plasma [38, 39]. [Pg.2809]

Black nickel oxide is used as an oxygen donor in three-way catalysts containing rhodium, platinum, and palladium (143). Three-way catalysts, used in automobiles, oxidize hydrocarbons and CO, and reduce NO The donor quaUty, ie, the abiUty to provide oxygen for the oxidation, results from the capabihty of nickel oxide to chemisorb oxygen (see Exhaust control, automotive). [Pg.14]

Many of the surfactants made from ethyleneamines contain the imidazoline stmcture or are prepared through an imidazoline intermediate. Various 2-alkyl-imidazolines and their salts prepared mainly from EDA or monoethoxylated EDA are reported to have good foaming properties (292—295). Ethyleneamine-based imida zolines are also important intermediates for surfactants used in shampoos by virtue of their mildness and good foaming characteristics. 2- Alkyl imidazolines made from DETA or monoethoxylated EDA and fatty acids or their methyl esters are the principal commercial intermediates (296—298). They are converted into shampoo surfactants commonly by reaction with one or two moles of sodium chloroacetate to yield amphoteric surfactants (299—301). The ease with which the imidazoline intermediates are hydrolyzed leads to arnidoamine-type stmctures when these derivatives are prepared under aqueous alkaline conditions. However, reaction of the imidazoline under anhydrous conditions with acryflc acid [79-10-7] to make salt-free, amphoteric products, leaves the imidazoline stmcture essentially intact. Certain polyamine derivatives also function as water-in-oil or od-in-water emulsifiers. These include the products of a reaction between DETA, TETA, or TEPA and fatty acids (302) or oxidized hydrocarbon wax (303). The amidoamine made from lauric acid [143-07-7] and DETA mono- and bis(2-ethylhexyl) phosphate is a very effective water-in-od emulsifier (304). [Pg.48]

NaCl, interact with the sulphur and vanadium oxides emitted from the combustion of technical grade hydrocarbons and die salt spray to form Na2S04 and NaV03- These conosive agents function in two modes, either the acidic mode in which for example, the sulphate has a high SO3 thermodynamic activity, of in the basic mode when the SO3 partial pressure is low in the combustion products. The mechanism of coiTosion is similar to the hot coiTosion of materials by gases widr the added effects due to the penetration of tire oxide coating by tire molten salt. [Pg.320]

The most widespread and persistent urban pollution problem is ozone. The causes of this and the lesser problem of CO and PMjq pollution in our urban areas are largely due to the diversity and number of urban air pollution sources. One component of urban smog, hydrocarbons, comes from automobile emissions, petroleum refineries, chemical plants, dry cleaners, gasoline stations, house painting, and printing shops. Another key component, nitrogen oxides, comes from the combustion of fuel for transportation, utilities, and industries. [Pg.397]

Lube oil extraction plants often use phenol as solvent. Phenol is used because of its solvent power with a wide range of feed stocks and its ease of recovery. Phenol preferentially dissolves aromatic-type hydrocarbons from the feed stock and improves its oxidation stability and to some extent its color. Phenol extraction can be used over the entire viscosity range of lube distillates and deasphalted oils. The phenol solvent extraction separation is primarily by molecular type or composition. In order to accomplish a separation by solvent extraction, it is necessary that two liquid phases be present. In phenol solvent extraction of lubricating oils these two phases are an oil-rich phase and a phenol-rich phase. Tne oil-rich phase or raffinate solution consists of the "treated" oil from which undesirable naphthenic and aromatic components have been removed plus some dissolved phenol. The phenol-rich phase or extract solution consists mainly of the bulk of the phenol plus the undesirable components removed from the oil feed. The oil materials remaining... [Pg.231]

The oxidative coupling of CH4 (OCM) in solid oxide fuel cells has attracted considerable attention in recent years because of the strong interest in the production of C2 hydrocarbons from natural gas. Work in this area utilizing solid electrolytes prior to 1999 has been reviewed.53... [Pg.402]

The second is a neat idea coming from Johnson Ma tthey. They invented the so-called continuously regenerating trap (CRT) consisting of a monolithic preoxidizer and a particulate trap, see Figure 9.3 [24]. The first monolith (containing Pt) oxidizes hydrocarbons and CO to CO2 and NO into NO2, which is very reactive... [Pg.192]

We have summarized below recent results concerning spectroscopic / flow reactor investigations of hydrocarbons partial and total oxidation on different transition metal oxide catalysts. The aim of this study is to have more information on the mechanisms of the catalytic activity of transition metal oxides, to better establish selective and total oxidation ways at the catalyst surface, and to search for partial oxidation products from light alkane conversion. [Pg.483]

Fuel cells are electrochemical devices transforming the heat of combustion of a fuel (hydrogen, natural gas, methanol, ethanol, hydrocarbons, etc.) directly into electricity. The fuel is electrochemically oxidized at the anode, whereas the oxidant (oxygen from the air) is reduced at the cathode. This process does not follow Carnot s theorem, so that higher energy efficiencies are expected up to 40-50% in electrical energy and 80-85% in total energy (heat production in addition to electricity). [Pg.343]

The decarboxylation of carboxylic acid in the presence of a nucleophile is a classical reaction known as the Hunsdiecker reaction. Such reactions can be carried out sometimes in aqueous conditions. Man-ganese(II) acetate catalyzed the reaction of a, 3-unsaturated aromatic carboxylic acids with NBS (1 and 2 equiv) in MeCN/water to afford haloalkenes and a-(dibromomethyl)benzenemethanols, respectively (Eq. 9.15).32 Decarboxylation of free carboxylic acids catalyzed by Pd/C under hydrothermal water (250° C/4 MPa) gave the corresponding hydrocarbons (Eq. 9.16).33 Under the hydrothermal conditions of deuterium oxide, decarbonylative deuteration was observed to give fully deuterated hydrocarbons from carboxylic acids or aldehydes. [Pg.306]

It is believed that SCR by hydrocarbons is an important way for elimination of nitrogen oxide emissions from diesel and lean-burn engines. Gerlach etal. [115] studied by infrared in batch condition the mechanism of the reaction between nitrogen dioxide and propene over acidic mordenites. The aim of their work was to elucidate the relevance of adsorbed N-containing species for the F>cNOx reaction to propose a mechanism. Infrared experiments showed that nitrosonium ions (NO+) are formed upon reaction between NO, NOz and the Brpnsted acid sites of H—MOR and that this species is highly reactive towards propene, forming propenal oxime at 120°C. At temperatures above 170°C, the propenal oxime is dehydrated to acrylonitrile. A mechanism is proposed to explain the acrylonitrile formation. The nitrile can further be hydrolysed to yield... [Pg.118]

Oxidation of organic compounds by dioxygen is a phenomenon of exceptional importance in nature, technology, and life. The liquid-phase oxidation of hydrocarbons forms the basis of several efficient technological synthetic processes such as the production of phenol via cumene oxidation, cyclohexanone from cyclohexane, styrene oxide from ethylbenzene, etc. The intensive development of oxidative petrochemical processes was observed in 1950-1970. Free radicals participate in the oxidation of organic compounds. Oxidation occurs very often as a chain reaction. Hydroperoxides are formed as intermediates and accelerate oxidation. The chemistry of the liquid-phase oxidation of organic compounds is closely interwoven with free radical chemistry, chemistry of peroxides, kinetics of chain reactions, and polymer chemistry. [Pg.20]

CL is weak in liquid-phase hydrocarbon oxidation and can be intensified. To increase the CL, activators are added to the oxidized hydrocarbon [17,220,223]. The activator takes an excess of energy from the excited ketone molecule and emits light in high yield ... [Pg.96]

The study of the interaction of hydroperoxide with other products of hydrocarbon oxidation showed the intensive initiation by reactions of hydroperoxide with formed alcohols, ketones, and acids [6,134]. Consequently, with the developing of the oxidation process the variety of reactions of initiation increases. In addition to reactions of hydroperoxide with the hydrocarbon and the bimolecular reaction of ROOH, reactions of hydroperoxide with alcohol and ketone formed from hydroperoxide appear. The values of rate constants (in L mol 1 s 1) of these reactions for three oxidized hydrocarbons are given below. [Pg.206]

The kinetic analysis proves that formation of very active radical from intermediate product can increase the reaction rate not more than twice. However, the formation of inactive radical can principally stop the chain reaction [77], Besides the rate, the change of composition of chain propagating radicals can influence the rate of formation and decay of intermediates in the oxidized hydrocarbon. In its turn, the concentrations of intermediates (alcohols, ketones, aldehydes, etc.) influence autoinitiation and the rate of autoxidation of the hydrocarbon (see Chapter 4). [Pg.236]

In addition to hydrogen abstraction by peroxyl radical from another molecule, the reaction of intramolecular hydrogen transfer occurs in peroxyl radicals in oxidized hydrocarbons (see Chapter 2). [Pg.264]

The reaction of olefin epoxidation by peracids was discovered by Prilezhaev [235]. The first observation concerning catalytic olefin epoxidation was made in 1950 by Hawkins [236]. He discovered oxide formation from cyclohexene and 1-octane during the decomposition of cumyl hydroperoxide in the medium of these hydrocarbons in the presence of vanadium pentaoxide. From 1963 to 1965, the Halcon Co. developed and patented the process of preparation of propylene oxide and styrene from propylene and ethylbenzene in which the key stage is the catalytic epoxidation of propylene by ethylbenzene hydroperoxide [237,238]. In 1965, Indictor and Brill [239] published studies on the epoxidation of several olefins by 1,1-dimethylethyl hydroperoxide catalyzed by acetylacetonates of several metals. They observed the high yield of oxide (close to 100% with respect to hydroperoxide) for catalysis by molybdenum, vanadium, and chromium acetylacetonates. The low yield of oxide (15-28%) was observed in the case of catalysis by manganese, cobalt, iron, and copper acetylacetonates. The further studies showed that molybdenum, vanadium, and... [Pg.415]

Phenols decrease the intensity of CL 7chi in oxidized hydrocarbons as a result of chain termination by the reaction with peroxyl radicals. Since Icu [R02 ]2 (see Chapter 2), the ratio (/0//)12 was found to be proportional to [ArOH] [7]. The kinetic isotope effect (k0K/k0n 1) proves that the peroxyl radical abstracts a hydrogen atom from the O—H bond of phenol [2,8]. [Pg.513]


See other pages where Oxidation hydrocarbons from is mentioned: [Pg.62]    [Pg.128]    [Pg.24]    [Pg.25]    [Pg.327]    [Pg.543]    [Pg.825]    [Pg.968]    [Pg.281]    [Pg.526]    [Pg.86]    [Pg.73]    [Pg.127]    [Pg.205]    [Pg.579]    [Pg.388]    [Pg.112]    [Pg.1794]    [Pg.281]    [Pg.267]    [Pg.115]    [Pg.72]    [Pg.86]    [Pg.63]    [Pg.347]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



From hydrocarbons

© 2024 chempedia.info