Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Under hydrothermal

Zeohtes are formed under hydrothermal conditions, defined here in a broad sense to include 2eoHte crystalli2ation from aqueous systems containing various types of reactants. Most synthetic 2eoHtes are produced under nonequilihrium conditions, and must be considered as metastable phases in a thermodynamic sense. [Pg.451]

Zeolites. A large and growing industrial use of aluminum hydroxide and sodium alurninate is the manufacture of synthetic zeoHtes (see Molecular sieves). ZeoHtes are aluminosiHcates with Si/Al ratios between 1 and infinity. There are 40 natural, and over 100 synthetic, zeoHtes. AH the synthetic stmctures are made by relatively low (100—150°C) temperature, high pH hydrothermal synthesis. For example the manufacture of the industriaHy important zeoHtes A, X, and Y is generaHy carried out by mixing sodium alurninate and sodium sHicate solutions to form a sodium alurninosiHcate gel. Gel-aging under hydrothermal conditions crystallizes the final product. In special cases, a small amount of seed crystal is used to control the synthesis. [Pg.137]

Transition aluminas are good catalyst supports because they are inexpensive and have good physical properties. They are mechanically stable, stable at relatively high temperatures even under hydrothermal conditions, ie, in the presence of steam, and easily formed in processes such as extmsion into shapes that have good physical strength such as cylinders. Transition aluminas can be prepared with a wide range of surface areas, pore volumes, and pore size distributions. [Pg.173]

Although hydration under hydrothermal conditions may be rapid, metastable iatermediate phases tend to form, and final equiUbria may not be reached for months at 100—200°C, or weeks at even higher temperatures. Hence, the temperatures of formation given ia Table 6 iadicate the conditions under saturated steam pressure that may be expected to yield appreciable quantities of the compound, although it may not be the most stable phase at the given temperature. The compounds are Hsted ia order of decreasiag basicity, or lime/siHca ratio. Reaction mixtures having ratios C S = 1 yield xonotHte at 150—400°C. Intermediate phases of C—S—H (I), C—S—H (II), and crystalline tobermorite ate formed ia succession. Tobermorite (1.13 nm) appears to persist indefinitely under hydrothermal conditions at 110—140°C it is a principal part of the biader ia many autoclaved cement—silica and lime—silica products. [Pg.287]

Reardon, P. A. Kelly, J. A. New Oxygen Scavengers and Their Chemistry Under Hydrothermal Conditions. Nalco/NACE International Corrosion Forum, 86. NACE International, USA, March 1986. [Pg.769]

Comparison of these results for plutonium with those for other tetravalent metals reveals some interesting facts. Thor-ium(IV), uranium(IV) and neptunium(IV) sulfates have been investigated under hydrothermal hydrolytic conditions. For uranium, the stable phases which have been reported include U(0H)2S0i (2), U60i, (OH)i, (SO.,) 6 (2). U (SOi,) 2 4H20 (23) and IKSO (24). [Pg.55]

Popolitov, V. I., and Litvin, B. N., in "Studies in Soviet Science Crystallization Processes under Hydrothermal Conditions (A. N. Lobachev, ed.), pp. 57-72. Consultants Bureau, New York, 1973. [Pg.421]

A simple model can be used to describe this control of the concentration. In this model the input is from rivers and the output is uptake by reactions in the ocean crust under hydrothermal systems. (An application of this model is given in Section 13.5). Thus... [Pg.270]

According to these previous studies, the most dominant dissolved states of Au and Ag in ore fluids are considered to be bisulfide and chloride complexes, depending on the chemistry of ore fluid (salinity, pH, redox state, etc.). However, very few experimental studies of Au solubility due to chloride complex and Ag solubility due to bisulfide complexes under hydrothermal conditions of interest here have been conducted. Thus, it is difficult to evaluate the effects of these important species on the Ag/Au of native gold and electrum. Other Au and Ag complexes with tellurium, selenium, bismuth, antimony, and arsenic may be stable in ore fluids but are not taken into account here due to the lack of thermochemical data. [Pg.253]

Under hydrothermal conditions, alumina suffers from increased rates of hydration and hydrolysis of the oxides, resulting in the weakening of conventional supports according to Equation 1. Silica can suffer a similar hydrothermal fate. Process pH can exacerbate the problem (Fig. 34.5). Hence hydrothermal stability is a paramount criterion. [Pg.307]

The decarboxylation of carboxylic acid in the presence of a nucleophile is a classical reaction known as the Hunsdiecker reaction. Such reactions can be carried out sometimes in aqueous conditions. Man-ganese(II) acetate catalyzed the reaction of a, 3-unsaturated aromatic carboxylic acids with NBS (1 and 2 equiv) in MeCN/water to afford haloalkenes and a-(dibromomethyl)benzenemethanols, respectively (Eq. 9.15).32 Decarboxylation of free carboxylic acids catalyzed by Pd/C under hydrothermal water (250° C/4 MPa) gave the corresponding hydrocarbons (Eq. 9.16).33 Under the hydrothermal conditions of deuterium oxide, decarbonylative deuteration was observed to give fully deuterated hydrocarbons from carboxylic acids or aldehydes. [Pg.306]

Holm and Andersson have provided an up-to-date survey of simulation experiments on the synthesis under hydrothermal conditions of molecules important for biogenesis (Holm and Andersson, 2005). It is clear that several research groups have been able to show in the meantime, using simulation experiments, that the conditions present at deep sea vents appear suitable for the synthesis of very different groups of substances. However, it remains unclear how these compounds could have been stabilized and protected against rapid decomposition. At present, metal ions (as complexing agents) and mineral surfaces are the subject of discussion and experiment. [Pg.186]

Table 7.1 Comparison of the yields of carbon-containing compounds obtained from an atmosphere of CH4, NH3, H2O and H2 using spark discharges with those obtained under hydrothermal conditions from a mixture of HCN, HCHO and NH3 at 423 K and 10 atm in the presence of pyrite-pyrrhotite-magnetite redox buffer (Holm and Andersson, 1995)... Table 7.1 Comparison of the yields of carbon-containing compounds obtained from an atmosphere of CH4, NH3, H2O and H2 using spark discharges with those obtained under hydrothermal conditions from a mixture of HCN, HCHO and NH3 at 423 K and 10 atm in the presence of pyrite-pyrrhotite-magnetite redox buffer (Holm and Andersson, 1995)...
The authors chose pyruvic acid as their model compound this C3 molecule plays a central role in the metabolism of living cells. It was recently synthesized for the first time under hydrothermal conditions (Cody et al., 2000). Hazen and Deamer carried out their experiments at pressures and temperatures similar to those in hydrothermal systems (but not chosen to simulate such systems). The non-enzymatic reactions, which took place in relatively concentrated aqueous solutions, were intended to identify the subsequent self-selection and self-organisation potential of prebiotic molecular species. A considerable series of complex organic molecules was tentatively identified, such as methoxy- or methyl-substituted methyl benzoates or 2, 3, 4-trimethyl-2-cyclopenten-l-one, to name only a few. In particular, polymerisation products of pyruvic acid, and products of consecutive reactions such as decarboxylation and cycloaddition, were observed the expected tar fraction was not found, but water-soluble components were found as well as a chloroform-soluble fraction. The latter showed similarities to chloroform-soluble compounds from the Murchison carbonaceous chondrite (Hazen and Deamer, 2007). [Pg.190]

Further experiments by Huber and Wachtershauser on chemoautotrophic biogenesis under hydrothermal conditions have shown that a number of a-amino acids and a-hydroxyacids could have been formed, subsequent to the binding of carbon (in the form of CO and CN ) to catalytically active transition metal precipitates. The general structure of such compounds is R-CHA-COOH, with R = H, CH3, C2H5 or HOCH2 and A = OH or NH2. [Pg.202]

Typically, various sized LDH particles are synthesized under hydrothermal conditions by altering the aging time and reaction temperature. A clear metal solution was prepared with concentration 0.1 M, and the ratio of Mg A1 fixed at 2 1. The clear solution was titrated up to pH 9.5 with 0.5 M of NaOH solution containing Na2C03, and samples were then aged in an autoclave at various temperatures for various... [Pg.404]

Fig. 13.3 Scanning electron microscopic images of LDH particles with various size (A) 100, (B) 200, (C) 1500, and (D) 4500 nm. LDH particles (A) and (B) were synthesized under hydrothermal conditions and (C) and (D) were prepared using hydrolysis of urea (see Table 13.1). Fig. 13.3 Scanning electron microscopic images of LDH particles with various size (A) 100, (B) 200, (C) 1500, and (D) 4500 nm. LDH particles (A) and (B) were synthesized under hydrothermal conditions and (C) and (D) were prepared using hydrolysis of urea (see Table 13.1).
Figure 1. A) XRD patterns of calcined MCM-22 zeolite before (a) and after (b) ion exchange with [Pt(NH3)4](N03)2 complex, B) typical SEM micrograph of Pt/MCM-22 zeolite synthesized under hydrothermal static conditions. Figure 1. A) XRD patterns of calcined MCM-22 zeolite before (a) and after (b) ion exchange with [Pt(NH3)4](N03)2 complex, B) typical SEM micrograph of Pt/MCM-22 zeolite synthesized under hydrothermal static conditions.
Hemley, J. J., G. L. Cygan and W. M. d Angelo, 1986, Effect of pressure on ore mineral solubilities under hydrothermal conditions. Geology 14, 377-379. [Pg.518]

Ueda, A., Kato, K., Ohsumi, T. et al. 2005. Experimental studies of C02-rock interaction at elevated temperatures under hydrothermal conditions. Geochemical Journal, 39, 417-425. [Pg.166]

A. Kogelbauer, J. C. Weber and J. G. Goodwin, Jr, The formation of cobalt silicates on Co/SiOz under hydrothermal conditions, Catal. Lett., 1995, 34, 259-267. [Pg.29]

Low temperature etching. Our data suggests that, under hydrothermal conditions the rate of pit formation is dramatically reduced, although perhaps not completely stopped, at C = Ccrjt. Etch pits on a natural, hydrothermally-etched quartz surface therefore indicate extended dissolution times, but not necessarily etching at C < Ccrit This is because the rate of etch pit formation even above Ccr t can be significant at elevated temperatures (as shown by crystal R9). However, at low temperatures, formation of etch pits when C > C would be less likely, and natural surfaces etched at low temperature should record the saturation state of the etching fluid. [Pg.642]

In order to gain some information about the fundamentals of the hydrothermal carbonization process, the hydrothermal carbonization of different carbohydrates and carbohydrate products was examined [12, 13]. For instance, hydrothermal carbons synthesized from diverse biomass (glucose, xylose, maltose, sucrose, amylopectin, starch) and biomass derivatives (HMF and furfural) were treated under hydrothermal conditions at 180 °C and were analyzed with respect to their chemical and morphological structures by SEM,13 C solid-state NMR and elemental analysis. This was combined with GC-MS experiments on residual liquor solutions to analyze side products... [Pg.202]

Fulton JL, Hoffmann MM, Darab JG (2000a) An X-ray absorption fine structure study of copper(I) chloride coordination structure in water up to 325°C. Chem Phys Lett 330 300-308 Fulton JL, Hoffmann MM, Darab JG, Palmer BJ, Stem EA (2000b) Copper(I) and Copper(II) Coordination stmcture under hydrothermal conditions at 325°C An X-ray Absorption Fine Stmcture and Molecular Dynamics Study. JPhys Chem A104 11651-11663... [Pg.425]

Theoretical calculations [43] based on first principles molecular dynamics discussed in Sect. 3.2.6 have suggested that Mg Al LDHs are most stable for n = 3 (i.e. x = 0.25) and indeed many minerals, including hydrotalcite itself, have this stoichiometry [4]. It has been reported that the synthesis of LDHs (with benzoate or terephthalate anions in the interlayers) from solutions containing Mg/Al = 2, leads to LDHs having the same composition when the synthesis is carried out at moderate temperatures but LDHs with Mg/Al = 3 (plus AlOOH) when the reaction is carried out under hydrothermal conditions [44]. It was proposed that the latter ratio represents the thermodynamically most favorable product. A similar observation has been reported [45] for solutions with Ni VPe = 2, where hydrothermal preparation led to segregation of an LDH with Ni VPe = 3 and Ni Fe 204. An attempt to synthesize a Co sAl LDH resulted in partial oxidation of the Co and formation of a Co o.yCo o.s LDH with complete migration of Al " from the layers to generate interlayer aluminum oxy-species [46]. [Pg.7]


See other pages where Under hydrothermal is mentioned: [Pg.500]    [Pg.518]    [Pg.519]    [Pg.519]    [Pg.343]    [Pg.88]    [Pg.134]    [Pg.74]    [Pg.505]    [Pg.1267]    [Pg.1280]    [Pg.189]    [Pg.286]    [Pg.173]    [Pg.375]    [Pg.259]    [Pg.435]    [Pg.437]    [Pg.329]    [Pg.70]    [Pg.175]    [Pg.187]    [Pg.212]    [Pg.444]    [Pg.32]   


SEARCH



© 2024 chempedia.info