Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylbenzene hydroperoxide

There are two main subclasses ofhydroperoxid.es organic (alkyl) hydroperoxides, ie, ROOH, and organomineral hydroperoxides, ie, Q(OOH), where Q is sihcon (43), germanium, tin, or antimony. The alkyl group in ROOH can be primary, secondary, or tertiary. Except for ethylbenzene hydroperoxide, only alkyl hydroperoxides are commercially important. [Pg.102]

Commercially, autoxidation is used in the production of a-cumyl hydroperoxide, tert-huty hydroperoxide, -diisopropylbenzene monohydroperoxide, -diisopropylbenzene dihydroperoxide, -menthane hydroperoxide, pinane hydroperoxide, and ethylbenzene hydroperoxide. [Pg.105]

Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

PO—SM Coproduction. The copioduction of propylene oxide and styrene (40—49) includes three reaction steps (/) oxidation of ethylbenzene to ethylbenzene hydroperoxide, (2) epoxidation of ethylbenzene hydroperoxide with propylene to form a-phenylethanol and propylene oxide, and (3) dehydration of a-phenylethanol to styrene. [Pg.484]

The oxidation step is similar to the oxidation of cumene to cumene hydroperoxide that was developed earlier and is widely used in the production of phenol and acetone. It is carried out with air bubbling through the Hquid reaction mixture in a series of reactors with decreasing temperatures from 150 to 130°C, approximately. The epoxidation of ethylbenzene hydroperoxide to a-phenylethanol and propylene oxide is the key development in the process. [Pg.484]

The second important process for propylene oxide is epoxidation with peroxides. Many hydroperoxides have been used as oxygen carriers for this reaction. Examples are t-butylhydroperoxide, ethylbenzene hydroperoxide, and peracetic acid. An important advantage of the process is that the coproducts from epoxidation have appreciable economic values. [Pg.222]

Epoxidation of propylene with ethylbenzene hydroperoxide is carried out at approximately 130°C and 35 atmospheres in presence of molybdenum catalyst. A conversion of 98% on the hydroperoxide has been reported ... [Pg.222]

Ethylbenzene hydroperoxide is produced by the uncatalyzed reaction of ethylbenzene with oxygen ... [Pg.222]

The reaction of olefin epoxidation by peracids was discovered by Prilezhaev [235]. The first observation concerning catalytic olefin epoxidation was made in 1950 by Hawkins [236]. He discovered oxide formation from cyclohexene and 1-octane during the decomposition of cumyl hydroperoxide in the medium of these hydrocarbons in the presence of vanadium pentaoxide. From 1963 to 1965, the Halcon Co. developed and patented the process of preparation of propylene oxide and styrene from propylene and ethylbenzene in which the key stage is the catalytic epoxidation of propylene by ethylbenzene hydroperoxide [237,238]. In 1965, Indictor and Brill [239] published studies on the epoxidation of several olefins by 1,1-dimethylethyl hydroperoxide catalyzed by acetylacetonates of several metals. They observed the high yield of oxide (close to 100% with respect to hydroperoxide) for catalysis by molybdenum, vanadium, and chromium acetylacetonates. The low yield of oxide (15-28%) was observed in the case of catalysis by manganese, cobalt, iron, and copper acetylacetonates. The further studies showed that molybdenum, vanadium, and... [Pg.415]

Since approximately 2.2 lb of /-butyl alcohol would be produced per 1 lb of propylene oxide, an alternative reactant in this method is ethylbenzene hydroperoxide. This eventually forms phenylmethylcarbinol along with the propylene oxide. The alcohol is dehydrated to styrene. This chemistry was covered in Chapter 9, Section 6 as one of the syntheses of styrene. Thus the side product can be varied depending on the demand for substances such as /-butyl alcohol or styrene. Research is being done on a direct oxidation of propylene with oxygen, analogous to that used in the manufacture of ethylene oxide from ethylene and oxygen (Chapter 9, Section 7). But the proper catalyst and conditions have not yet been found. The methyl group is very sensitive to oxidation conditions. [Pg.169]

The activity of titanium based catalysts for the oxidation of organic compounds is well known. Wulff et al. in 1971 [1] patented for Shell Oil a process for the selective epoxidation of propylene with hydroperoxides like ethylbenzene hydroperoxide (EBH) or tertiary-butyl hydroperoxide (TBH) with the use of a catalyst made of Ti02 deposited on high surface area Si02. A Shell Oil plant for the production of 130,000 tons/y of propylene oxide at Moerdijk, Holland, is based on this technology. [Pg.343]

In the C4 coproduct route isobutane is oxidized with oxygen at 130-160°C and under pressure to tert-BuOOH, which is then used in epoxidation. In the styrene coproduct process ethylbenzene hydroperoxide is produced at 100-130°C and at lower pressure (a few atmospheres) and is then applied in isobutane oxidation. Epoxidations are carried out in high excess of propylene at about 100°C under high pressure (20-70 atm) in the presence of molybdenum naphthenate catalyst. About 95% epoxide selectivity can be achieved at near complete hydroperoxide and 10-15% propylene conversions. Shell developed an alternative, heterogeneous catalytic system (T1O2 on SiOi), which is employed in a styrene coproduct process.913 914... [Pg.509]

Styrene, one of the world s major organic chemicals, is derived from ethylene via ethylbenzene. Several recent developments have occurred with respect to this use for ethylene. One is the production of styrene as a co-product of the propylene oxide process developed by Halcon International (12). In this process, benzene is alkylated with ethylene to ethylbenzene, and the latter is oxidized to ethylbenzene hydroperoxide. This hydroperoxide, in the presence of suitable catalysts, can convert a broad range of olefins to their corresponding oxirane compounds, of which propylene oxide presently has the greatest industrial importance. The ethylbenzene hydroperoxide is converted simultaneously to methylphenyl-carbinol which, upon dehydration, yields styrene. Commercial application of this new development in the use of ethylene will be demonstrated in a plant in Spain in the near future. [Pg.161]

Abbreviations p, ratio between ionic radii of cation and anion TBHP, rm-butyl hydroperoxide EBHP, ethylbenzene hydroperoxide PO, propylene oxide TBOT, tetrabutyl orthotitanate TEOT, tetraethyl orthotitanate TIOT, tetraisopropyl orthotitanate TEOS, tetraethyl orthosilicate THF, tetrahydrofuran TPA-OH, tetrapropylammonium hydroxide TMOS, tetramethyl orthosilicate TBA-OH, tetrabutylammonium hydroxide TBP-OH, tetrabutylphophonium hydroxide TEA-OH, tetraethylammonium hydroxide TMA-OH, tetramethylammonium hydroxide. [Pg.255]

Heterolytic liquid-phase oxidation processes are more recent than homolytic ones. The two major applications are the Wacker process for oxidation of ethylene to acetaldehyde by air, catalyzed by PdCl2-CuCl2 systems,98 and the Arco oxirane" or Shell process100 for epoxidation of propylene by f-butyl or ethylbenzene hydroperoxide catalyzed by molybdenum or titanium complexes. These heterolytic reactions require less drastic conditions than the homolytic ones... [Pg.327]

Abbreviations AD, asymmetric dihydroxylation BPY, 2,2 -bipyridine DMTACN, 1,4-dimethyl-l,4,7-triazacyclonane EBHP, ethylbenzene hydroperoxide ee, enantiomeric excess HAP, hydroxyapatite LDH, layered double hydroxide or hydrotalcite-type structure mCPBA, meta-chloroperbenzoic acid MTO, methyltrioxorhenium NMO, A-methylmorpholine-A-oxide OMS, octahedral molecular sieve Pc, phthalocyanine phen, 1,10-phenantroline PILC, pillared clay PBI, polybenzimidazole PI, polyimide Por, porphyrin PPNO, 4-phenylpyridine-A-oxide PS, polystyrene PVP, polyvinylpyridine SLPC, supported liquid-phase catalysis f-BuOOH, tertiary butylhydroperoxide TEMPO, 2,2,6,6-tetramethyl-l-piperdinyloxy TEOS, tetraethoxysilane TS-1, titanium silicalite 1 XPS, X-ray photoelectron spectroscopy. [Pg.1]

Industrial interest in this reaction was stimulated by the discovery that it constitutes a commercially attractive route to propylene oxide 426a,b Thus, the metal-catalyzed epoxidation of propylene with ethylbenzene hydroperoxide forms the basis of the Halcon process426a,b 427 for the coproduction of propylene oxide and styrene from propylene, ethylbenzene, and oxygen via the following sequence ... [Pg.345]

Company was the largest producer. In that year, Oxirane brought on stream the first peroxidation process involving catalyzed epoxidation of propylene with tert-butyl hydroperoxide. In 1977, Oxirane (later Arco Chemical) commercialized a process which employed ethylbenzene hydroperoxide as the epoxidizing agent and produced PO and styrene (Fig. 10.23). [Pg.375]

An alternatives to the use of the ethylbenzene hydroperoxide is tertiary-butyl hydroperoxide obtained from isobutane and dioxygen. The product alcohol is converted with methanol to MTBE (methyl tertiary butylether). [Pg.44]

The epoxidation of propene with tert-butylhydroperoxide (TBHP) or ethylbenzene hydroperoxide (EBHP), for example, accounts for more than one million tons of propene oxide production on an annual basis (Fig. 4.19). [Pg.147]

Styrene is manufactured nearly entirely by the direct dehydrogenation of ethylbenzene. Smaller amounts are obtained indirectly, as a co product, from the production of propy. lene oxide by the Oxirane and Shell technologies, industrialized in the United States, the Netherlands and Spain, and whose essential intermediate step is the formation of ethylbenzene hydroperoxide, or from the production of aniline, by a technique develop jn the USSR, which combines the highly exothermic hydrogenation of nitrobenzene with the highly endothermic dehydrogenation of ethylbenzene. [Pg.361]


See other pages where Ethylbenzene hydroperoxide is mentioned: [Pg.376]    [Pg.477]    [Pg.188]    [Pg.487]    [Pg.199]    [Pg.83]    [Pg.332]    [Pg.192]    [Pg.442]    [Pg.556]    [Pg.1085]    [Pg.70]    [Pg.556]    [Pg.1085]    [Pg.455]    [Pg.376]    [Pg.48]    [Pg.256]    [Pg.167]    [Pg.8]    [Pg.89]    [Pg.364]    [Pg.269]    [Pg.42]    [Pg.83]   
See also in sourсe #XX -- [ Pg.357 , Pg.362 ]

See also in sourсe #XX -- [ Pg.116 ]

See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.702 ]

See also in sourсe #XX -- [ Pg.597 ]




SEARCH



Ethylbenzene

Ethylbenzene hydroperoxide conversion

Ethylbenzene hydroperoxide temperature

Of ethylbenzene hydroperoxide

Oxidants ethylbenzene hydroperoxide (EBHP

Propene ethylbenzene hydroperoxide

Styrene from ethylbenzene hydroperoxide

© 2024 chempedia.info