Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolith first

Hydrophilic polystyrene-based continuous beds bearing a hydrophilic surface on a hydrophobic polymeric support were prepared by a two-step modification of polychloromethylstyrene monolith first with ethylenediamine followed either by a reaction with y-gluconolactone or with chloroacetic acid [57,122]. Activation could also be performed by grafting 4-vinyl-2,2-dimethylazactone onto the monolith porous surface [123]. [Pg.37]

The fit of these equations to the data is very good, as seen in Fig. 18. These equations are valid to very small values of CO concentrations, where the reaction becomes first order with respect to CO. In a mixture of CO with oxygen, there should be a maximum in reaction rate when the CO concentration is at 0.2%, as shown in Fig. 19. When the oxidation of olefins and aromatics over a platinum loaded monolith is over 99% complete, the conversion of higher paraffins may be around 90% and the conversion of the intractable methane is only 10%. [Pg.93]

Diffusion effects can be expected in reactions that are very rapid. A great deal of effort has been made to shorten the diffusion path, which increases the efficiency of the catalysts. Pellets are made with all the active ingredients concentrated on a thin peripheral shell and monoliths are made with very thin washcoats containing the noble metals. In order to convert 90% of the CO from the inlet stream at a residence time of no more than 0.01 sec, one needs a first-order kinetic rate constant of about 230 sec-1. When the catalytic activity is distributed uniformly through a porous pellet of 0.15 cm radius with a diffusion coefficient of 0.01 cm2/sec, one obtains a Thiele modulus y> = 22.7. This would yield an effectiveness factor of 0.132 for a spherical geometry, and an apparent kinetic rate constant of 30.3 sec-1 (106). [Pg.100]

They also dramatically advanced the bipolar design concept, first explored by Marwood and Vayenas to induce NEMCA in monolithic YSZ stmctures, a key step for the practical utilization of NEMCA. [Pg.560]

Strobel et al. (101) reported a unique approach to delivery of anticancer agents from lactide/glycolide polymers. The concept is based on the combination of misonidazole or adriamycin-releasing devices with radiation therapy or hyperthermia. Prototype devices consisted of orthodontic wire or sutures dip-coated with drug and polymeric excipient. The device was designed to be inserted through a catheter directly into a brain tumor. In vitro release studies showed the expected first-order release kinetics on the monolithic devices. [Pg.22]

The second is a neat idea coming from Johnson Ma tthey. They invented the so-called continuously regenerating trap (CRT) consisting of a monolithic preoxidizer and a particulate trap, see Figure 9.3 [24]. The first monolith (containing Pt) oxidizes hydrocarbons and CO to CO2 and NO into NO2, which is very reactive... [Pg.192]

Firstly, there are technical reasons concerning catalyst and reactor requirements. In the chemical industry, catalyst performance is critical. Compared to conventional catalysts, they are relatively expensive and catalyst production and standardization lag behind. In practice, a robust, proven catalyst is needed. For a specific application, an extended catalyst and washcoat development program is unavoidable, and in particular, for the fine chemistry in-house development is a burden. For coated systems, catalyst loading is low, making them unsuited for reactions occurring in the kinetic regime, which is particularly important for bulk chemistry and refineries. In that case, incorporated monolithic catalysts are the logical choice. Catalyst stability is crucial. It determines the amount of catalyst required for a batch process, the number of times the catalyst can be reused, and for a continuous process, the run time. [Pg.203]

In this paper, we first briefly describe both the single-channel 1-D model and the more comprehensive 3-D model, with particular emphasis on the comparison of the features included and their capabilities/limitations. We then discuss some examples of model applications to illustrate how the monolith models can be used to provide guidance in emission control system design and implementation. This will be followed by brief discussion of future research needs and directions in catalytic converter modeling, including the development of elementary reaction step-based kinetic models. [Pg.13]

Our earlier converter modeling study [3] has shown that during the cold-start period (when a cold monolith converter is suddenly exposed to hot exhaust gas), the upstream section of the monolith is first heated up to the reaction temperatures by the hot exhaust, leading to converter lightoff, and that the reaction is confined to a small fraction of the total... [Pg.15]

The realization of complete bench-scale micro reactor set-ups is certainly still in its infancy. Nevertheless, the first investigations and proposals point at different generic concepts. First, this stems from the choice of the constructing elements for such set-ups. Either microfluidic components can be exclusively employed (the so-caUed monolithic concept) or mixed with conventional components (the so-called hybrid or multi-scale concept). Secondly, differences concerning the task of a micro-reactor plant exist. The design can be tailor-made for a specific reaction or process (specialty plant) or be designated for various processing tasks (multi-purpose plant). [Pg.64]

Thus, there are two possible modes of utilizing zinc anodes in alkaline solutions. In the first and older mode, only tfie primary process is used, with monolithic zinc anodes and a large volume of electrolyte. In the second mode, the secondary process is employed, with powdered zinc anodes at which the true current densities are much lower than at smooth electrodes. [Pg.352]

Two ways to reduce the diffusion length in TBRs are 1) use of smaller catalyst particles, or 2) use of an egg-shell catalyst. The first remedy, however, will increase pressure drop until it becomes unacceptable, and the second reduces the catalyst load in the reaction zone, making the loads of the TBR and the MR comparable. For instance, the volumetric catalyst load for a bed of 1 mm spherical particles with a 0.1 mm thick layer of active material is 0.27. The corresponding load for a monolithic catalyst made from a commercial cordierite structure (square cells, 400 cpsi, wall thickness 0.15 mm), also with a 0.1 mm thick layer of active material, is 0.25. [Pg.391]

We use the second-dimension separation from Fig. 6.6 with a 25 pL injection volume and 2.5 min sampling time the separation is an RPLC method that uses a monolithic column. Thus, 10 pL/min is the maximum flow rate in the first-dimension. Fig. 6.7 shows the development of the first-dimension column that utilizes a hydrophilic interaction (or HILIC) column for the separation of proteins at decreasing flow rates. The same proteins were separated in Fig. 6.6 (RPLC) and 6.7 (HILIC) and have a reversed elution order, which is known from the basics of HILIC (Alpert, 1990). It is believed that HILIC and RPLC separations are a good pair for 2DLC analysis of proteins as they appear to have dissimilar retention mechanisms, much like those of NPLC and RPLC it has been suggested that HILIC is similar in retention to NPLC (Alpert, 1990). Because the HILIC column used in Fig. 6.7 gave good resolution at 0.1 mL/min and no smaller diameter column was available, the flow was split 10-fold to match the second-dimension requirement... [Pg.141]

As mentioned earlier, high-speed separation is necessary to carry out fast, comprehensive 2D HPLC. The polymer monoliths have not been employed in such 2D HPLC, probably because permeability of polymer monoliths is not high enough to allow fast elution of the second dimension (2nd-D) in simple 2D operation, and the gradient cycle at the 2nd-D cannot be so fast to allow online 2D operation without reducing peak capacity at first dimension (lst-D). [Pg.152]

The application of polymer monoliths in 2D separations, however, is very attractive in that polymer-based packing materials can provide a high performance, chemically stable stationary phase, and better recovery of biological molecules, namely proteins and peptides, even in comparison with C18 phases on silica particles with wide mesopores (Tanaka et al., 1990). Microchip fabrication for 2D HPLC has been disclosed in a recent patent, based on polymer monoliths (Corso et al., 2003). This separation system consists of stacked separation blocks, namely, the first block for ion exchange (strong cation exchange) and the second block for reversed-phase separation. This layered separation chip device also contains an electrospray interface microfabricated on chip (a polymer monolith/... [Pg.152]


See other pages where Monolith first is mentioned: [Pg.15]    [Pg.725]    [Pg.272]    [Pg.15]    [Pg.725]    [Pg.272]    [Pg.47]    [Pg.321]    [Pg.23]    [Pg.172]    [Pg.201]    [Pg.192]    [Pg.199]    [Pg.180]    [Pg.113]    [Pg.98]    [Pg.118]    [Pg.15]    [Pg.11]    [Pg.293]    [Pg.655]    [Pg.16]    [Pg.16]    [Pg.686]    [Pg.115]    [Pg.168]    [Pg.14]    [Pg.263]    [Pg.272]    [Pg.286]    [Pg.319]    [Pg.573]    [Pg.57]    [Pg.12]    [Pg.15]    [Pg.106]    [Pg.139]    [Pg.152]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



© 2024 chempedia.info