Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitation, isolation, and

A holy grail for DON (and DOM in general) remains a rapid and portable method to quantitatively isolate and desalt a large dissolved sample (Bronk, 2002). Such a method would not only allow a wealth of diverse techniques to be brought to bear on the largest unknown fraction of DON, but would allow direct isotopic measurements and compound-specific mass balances. Examples of some approaches currently being explored to improve DON recovery on both small and large scales include homemade ion-retardation resins (Bronk, unpublished data), electrodialysis (Vetter et al, 2007), and use of nano-filtration membranes coupled to standard ultrafiltration approaches (McCarthy et al unpubhshed data). [Pg.1257]

G14. Grundy, S. M., Ahrens, E. H., and Miettinen, T. A., Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Upid Res. 6, 397—410 (1965). [Pg.221]

Quantitative isolation and purification without losses of the active components, which are mostly present only in trace amounts, is beset with difficulties due to the many interfering contaminants it must be carried out under the mildest possible conditions. Consequently every step in the... [Pg.261]

Miettinen, T. a., E. H. Ahrens Jr., and S. M. Grundy Quantitative isolation and gasliquid chromatographic analysis of total dietary and fecal neutral steroids. J. Lipid Res. 6,411 (1965). [Pg.39]

For example, when an N-methylthioacetamide (96), R, = R — Me, was condensed with chloroacetone, a 2,3,4-trimethylthiazolium chloride was obtained in quantitative yield. The reaction is usually run in aqueous or alcoholic solution at room temperature. At low temperature, with N-phenylthioacetamide (96), Rj = Me, R2 = Ph and chloroacetone, an acyclic intermediate (98) was isolated and characterized (Scheme 43). It was easily converted to 2,4-dimethyl-3-phenylthiazolium chloride (97), R, = Rs = Me, Rj -Ph, by heating (99,102, 145). [Pg.211]

Isotope Dilution Another important quantitative radiochemical method is isotope dilution. In this method of analysis a sample of analyte, called a tracer, is prepared in a radioactive form with a known activity. Ax, for its radioactive decay. A measured mass of the tracer, Wf, is added to a sample containing an unknown mass, w, of a nonradioactive analyte, and the material is homogenized. The sample is then processed to isolate wa grams of purified analyte, containing both radioactive and nonradioactive materials. The activity of the isolated sample, A, is measured. If all the analyte, both radioactive and nonradioactive, is recovered, then A and Ax will be equal. Normally, some of the analyte is lost during isolation and purification. In this case A is less than Ax, and... [Pg.646]

A major example of isotope-dilution analysis lies in the procedure itself, which does not require any quantitative isolation of the elements being investigated. The relation between the abundance of the element under investigation and the spike is such that, once the spike has been intimately mixed with the sample, any losses of sample have no effect on the result (Figure 48.14). [Pg.366]

Acetaldehyde can be isolated and identified by the characteristic melting points of the crystalline compounds formed with hydrazines, semicarbazides, etc these derivatives of aldehydes can be separated by paper and column chromatography (104,113). Acetaldehyde has been separated quantitatively from other carbonyl compounds on an ion-exchange resin in the bisulfite form the aldehyde is then eluted from the column with a solution of sodium chloride (114). In larger quantities, acetaldehyde may be isolated by passing the vapor into ether, then saturating with dry ammonia acetaldehyde—ammonia crystallizes from the solution. Reactions with bisulfite, hydrazines, oximes, semicarb azides, and 5,5-dimethyl-1,3-cyclohexanedione [126-81 -8] (dimedone) have also been used to isolate acetaldehyde from various solutions. [Pg.53]

Calcium Oxalate. The monohydrate [5794-28-5], CaC2 04-H2 0, mol wt 128.10,is of importance principally as an intermediate in oxahc acid manufacture and in analytical chemistry it is the form in which calcium is frequentiy quantitatively isolated. Its solubihty in water is very low, lower than that of the other aLkahne-earth oxalates. The approximate solubihties of this and several related salts are indicated in Table 6. [Pg.462]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

P4S4 is one of the most recent binary sulfides to be isolated and characterized and it exists in two structurally distinct forms.Each can be made in quantitative yield by reacting the appropriate isomer of P4S3I2 (p. 503) with [(Me3Sn)2S] in CS2 solution ... [Pg.508]

Dimethyl 2,7-dimethyl-4//-azepine-3,6-dicarboxylate, which was the first 4//-azepine to be isolated and characterized,29 on heating, or on treatment with sodium ethoxide in ethanol, rearranges quantitatively to the 3//-isomer. The X-ray crystal structure of dimethyl 7-(dimethylamino)-6-methyl-4//-azepine-2,3-dicarboxylate has been determined.42... [Pg.110]

All samples can be reduced to such a chromatogram and if the reduced chromatogram can be resolved then, almost without exception, so can the sample. In the following discussion it is assumed that all the components of the mixture have equal importance and must be isolated and quantitatively estimated. The analyst will, at times, be presented with samples for which a full analysis is not required and such samples will be discussed subsequently. [Pg.107]

Malrieu predicted qualitatively that the l-silaallene framework would be nonlinear. but how much the moiety would deviate from 180 was unclear. The first quantitative values were seen with the isolation and structural determination of the two 1-silaallenes 56 and 59a, whieh have very similar Si=C=C angles of 173.5 and 172.0, respectively (Table III). This is an average deviation of 7.3 from linearity—significant, but relatively small compared to the deviations shown by the germanium and tin substituted allenes. [Pg.34]

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]

A variety of very sensitive techniques can now be ap-phed to the isolation and characterization of genes and to the quantitation of gene products. [Pg.412]

In situ densitometry has been the most preferred method for quantitative analysis of substances. The important applications of densitometry in inorganic PLC include the determination of boron in water and soil samples [38], N03 and FefCNfg in molasses [56], Se in food and biological samples [28,30], rare earths in lanthanum, glass, and monazite sand [22], Mg in aluminum alloys [57], metallic complexes in ground water and electroplating waste water [58], and the bromate ion in bread [59]. TLC in combination with in situ fluorometry has been used for the isolation and determination of zirconium in bauxite and almnimun alloys [34]. The chromatographic system was silica gel as the stationary phase and butanol + methanol + HCl -H water -n HF (30 15 30 10 7) as the mobile phase. [Pg.354]

Although organosilanes appear to react slowly (if at all) with water alone, in the presence of acids or bases (e.g., alkali metal hydroxides), reactions to give a silanol and H2 are rapid, with bases being particularly powerful catalysts. The evolution of H2 in this type of reaction may be used as both a qualitative and a quantitative test for Si-H bonds, and the mechanism of the acid and the base hydrolysis has been discussed in detail (30,31). This hydrolytic method is not very common for the preparation of silanols that are to be isolated, because both acids and bases catalyze the condensation of silanols to siloxanes, and therefore, only compounds containing large substituents are conveniently made in this way. If an anhydrous alkali metal salt is used, a metal siloxide may be isolated and subsequently hydrolyzed to give the silanol [Eq. (10)] (32). [Pg.158]

Carbonic anhydrase (CA) exists in three known soluble forms in humans. All three isozymes (CA I, CA II, and CA III) are monomeric, zinc metalloenzymes with a molecular weight of approximately 29,000. The enzymes catalyze the reaction for the reversible hydration of C02. The CA I deficiency is known to cause renal tubular acidosis and nerve deafness. Deficiency of CA II produces osteopetrosis, renal tubular acidosis, and cerebral calcification. More than 40 CA II-defi-cient patients with a wide variety of ethnic origins have been reported. Both syndromes are autosomal recessive disorders. Enzymatic confirmation can be made by quantitating the CA I and CA II levels in red blood cells. Normally, CA I and CAII each contribute about 50% of the total activity, and the CAI activity is completely abolished by the addition of sodium iodide in the assay system (S22). The cDNA and genomic DNA for human CA I and II have been isolated and sequenced (B34, M33, V9). Structural gene mutations, such as missense mutation, nonsense... [Pg.36]


See other pages where Quantitation, isolation, and is mentioned: [Pg.117]    [Pg.9]    [Pg.383]    [Pg.265]    [Pg.194]    [Pg.117]    [Pg.9]    [Pg.383]    [Pg.265]    [Pg.194]    [Pg.68]    [Pg.2]    [Pg.267]    [Pg.287]    [Pg.16]    [Pg.417]    [Pg.17]    [Pg.298]    [Pg.104]    [Pg.107]    [Pg.188]    [Pg.542]    [Pg.209]    [Pg.525]    [Pg.428]    [Pg.186]    [Pg.48]    [Pg.167]    [Pg.311]    [Pg.34]    [Pg.660]    [Pg.178]    [Pg.152]   


SEARCH



© 2024 chempedia.info