Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oleic acid unsaturation

Fatty acids can be grouped into two main categories depending on the presence or absence of double bonds between carbon atoms. Fatty acids that contain no double bonds are referred to as saturated. Those that have one or more double bonds are called unsaturated. Figure 24-12 shows the structures of two common fatty acids. Stearic acid is an 18-carbon saturated fatty acid oleic acid is an 18-carbon unsaturated fatty acid. What makes oleic acid unsaturated ... [Pg.784]

Chief constituents Linoleic and oleic acids (unsaturated), palmitic and stearic (saturated). [Pg.338]

Unsaturated fats tend to be oils because their bent chains can t get close together. Olive oil and canola oil contain the unsaturated fat oleic acid. Unsaturated fats come from plants. [Pg.114]

Multiply unsaturated linolenic and linoleic acid residues make triglycerides more vulnerable to oxidative degradation than oleic acid which is relatively stable. It is therefore desirable to hydrogenate the most unsaturated residues selectively without production of large quantities of stearic (fully saturated) acid. The stepwise reduction of an unsaturated oil may be visualized as ... [Pg.125]

Positionalisomeri tion occurs most often duting partial hydrogenation of unsaturated fatty acids it also occurs ia strongly basic or acidic solution and by catalysis with metal hydrides or organometaUic carbonyl complexes. Concentrated sulfuric or 70% perchloric acid treatment of oleic acid at 85°C produces y-stearolactone from a series of double-bond isomerizations, hydration, and dehydration steps (57). [Pg.86]

The dimer acids [61788-89-4] 9- and 10-carboxystearic acids, and C-21 dicarboxylic acids are products resulting from three different reactions of C-18 unsaturated fatty acids. These reactions are, respectively, self-condensation, reaction with carbon monoxide followed by oxidation of the resulting 9- or 10-formylstearic acid (or, alternatively, by hydrocarboxylation of the unsaturated fatty acid), and Diels-Alder reaction with acryUc acid. The starting materials for these reactions have been almost exclusively tall oil fatty acids or, to a lesser degree, oleic acid, although other unsaturated fatty acid feedstocks can be used (see Carboxylic acids. Fatty acids from tall oil Tall oil). [Pg.113]

Structure and Mechanism of Formation. Thermal dimerization of unsaturated fatty acids has been explaiaed both by a Diels-Alder mechanism and by a free-radical route involving hydrogen transfer. The Diels-Alder reaction appears to apply to starting materials high ia linoleic acid content satisfactorily, but oleic acid oligomerization seems better rationalized by a free-radical reaction (8—10). [Pg.114]

The yolk is separated from the white by the vitelline membrane, and is made up of layers that can be seen upon careful examination. Egg yolk is a complex mixture of water, Hpids, and proteias. Lipid components iaclude glycerides, 66.2% phosphoUpids, 29.6% and cholesterol [57-88-5] 4.2%. The phosphohpids consist of 73% lecithin [8002 3-5] 15% cephahn [3681-36-7], and 12% other phosphohpids. Of the fatty acids, 33% are saturated and 67% unsaturated, including 42% oleic acid [112-80-1] and 7% linoleic acid [60-33-3]. Fatty acids can be changed by modifying fatty acids ia the laying feed (see... [Pg.455]

Organisms differ with respect to formation, processing, and utilization of polyunsaturated fatty acids. E. coli, for example, does not have any polyunsaturated fatty acids. Eukaryotes do synthesize a variety of polyunsaturated fatty acids, certain organisms more than others. For example, plants manufacture double bonds between the A and the methyl end of the chain, but mammals cannot. Plants readily desaturate oleic acid at the 12-position (to give linoleic acid) or at both the 12- and 15-positions (producing linolenic acid). Mammals require polyunsaturated fatty acids, but must acquire them in their diet. As such, they are referred to as essential fatty acids. On the other hand, mammals can introduce double bonds between the double bond at the 8- or 9-posi-tion and the carboxyl group. Enzyme complexes in the endoplasmic reticulum desaturate the 5-position, provided a double bond exists at the 8-position, and form a double bond at the 6-position if one already exists at the 9-position. Thus, oleate can be unsaturated at the 6,7-position to give an 18 2 d5-A ,A fatty acid. [Pg.816]

More than LOO different fatty acids are known, and about 40 occur widely. Palmitic acid (C ) and stearic acid (Cjy) are the most abundant saturated fatty adds oleic and linoleic acids (both Care the most abundant unsaturated ones. Oleic acid is monounsaturated since it has only one double bond, whereas linoleic, linolenic, and arachidonic acids are polyunsaturated fatty acids because they have more than one double bond. Linoleic and linolenic... [Pg.1061]

Even today renewable resources play a dominant role as raw materials for surfactants, but only because of the great contribution made by soaps to the production of surfactants. If the soaps are left out of consideration as native surfactants, petrochemistry holds 65-70% of the production of synthetic surfactants [2]. But for the future a further increase of renewable raw materials is expected in surfactant production [3]. The main reason for this development is the superior digestibility in the environment of products produced from natural materials. The future importance of the renewable raw materials becomes evident from the fact that even now new plants are cultivated or plants are modified to obtain an improved yield. A new type of sunflower has been cultivated to obtain a higher proportion of monounsaturated oleic acid compared with doubly unsaturated linoleic acid [4],... [Pg.462]

The most frequently used systematic nomenclature names the fatty acid after the hydrocarbon with the same number and arrangement of carbon atoms, with -oic being substituted for the final -e (Genevan system). Thus, saturated acids end in -anoic, eg, octanoic acid, and unsaturated acids with double bonds end in -enoic, eg, octadecenoic acid (oleic acid). [Pg.111]

The carbon chains of samrated fatty acids form a zigzag pattern when extended, as at low temperamres. At higher temperatures, some bonds rotate, causing chain shortening, which explains why biomembranes become thinner with increases in temperamre. A type of geometric isomerism occurs in unsaturated fatty acids, depending on the orientation of atoms or groups around the axes of double bonds, which do not allow rotation. If the acyl chains are on the same side of the bond, it is cis-, as in oleic acid if on opposite sides, it is tram-, as in elaidic acid, the tram isomer of oleic acid (Fig-... [Pg.112]

Certain long-chain unsaturated fatty acids of metabolic significance in mammals are shown in Figure 23-1. Other C20, C22, and C24 polyenoic fatty acids may be derived from oleic, linoleic, and a-flnolenic acids by chain elongation. Palmitoleic and oleic acids are not essential in the diet because the tissues can introduce a double bond at the position of a saturated fatty acid. [Pg.190]

Cowan Teeter (1944) reported a new class of resinous substances based on the zinc salts of dimerized unsaturated fatty acids such as linoleic and oleic acid. The latter is referred to as dimer acid. Later, Pellico (1974) described a dental composition based on the reaction between zinc oxide and either dimer or trimer acid. In an attempt to formulate calcium hydroxide cements which would be hydrolytically stable, Wilson et al. (1981) examined cement formation between calciimi hydroxide and dimer acid. They found it necessary to incorporate an accelerator, alimiiniiun acetate hydrate, Al2(OH)2(CHgCOO)4.3H2O, into the cement powder. [Pg.351]

Dimerization of unsaturated fatty acids, to. so-called dimer acids, is widely practised in industry, where acid-treated clays are invariably used as a catalyst. In the case of oleic acid the major products are dimers, trimers, and isosteric acid. Koster et al. (1998) have investigated the relative importance of the various acid sites as well as structural and textural parameters of montmorrilonite. The interlamellar space dominates the oleic acid dimerization and the active site is the tetrahedrol substitution site. [Pg.137]

Fatty acid Separation of tallow fatty acid into saturated and unsaturated fractions 20,000 Stearic acid Iodine no. 2 Oleic acid Cloud pt 5 C Falling film Japan Undisclosed... [Pg.13]

Laurie, myristic, palmitic, and stearic fatty acids make up most of the saturated fatty acids found in fats. Oleic acid, linoleic acid, and linolenic acid are the most abundant unsaturated fatty acids found in oils. [Pg.189]

The unsaturated fatty acid oxidation proceeds at a rate higher over that for saturated acids. For example, if the oxidation rate for saturated stearic acid is taken as a reference value, the oxidation rate for oleic acid is i 1 times, linolic acid, 114 times, linolenic acid, 170 times, and arachidonic acid, nearly 200 times as high as that for stearic acid. [Pg.198]

Biosynthesis of Unsaturated Fatty Acids. In the mammalian tissues, the forma-tion of monoene fatty acids is only possible. Oleic acid is derived from stearic acid, and palmitooleic acid, from palmitic acid. This synthesis is carried out in the endoplasmic reticulum of the liver cells via the monooxigenase oxidation chain. Any other unsaturated fatty acids are not produced in the human organism and must be supplied in vegetable food (plants are capable of generating polyene fatty acids). Polyene fatty acids are essential food factors for mammals. [Pg.203]

Poly(3HAMCL)s have also been produced from free fatty acid mixtures derived from industrial by-products which are potentially interesting low-cost renewable resources. Isolation and analysis of the polymer allowed the identification of 16 different saturated, mono-unsaturated and di-unsaturated monomers [46]. Except for the presence of diene-containing monomers and a large number of minor components, the composition of the fatty acid mixture derived PHA did not differ significantly from oleic acid derived PHAs. [Pg.168]

An example of the large variety of monomer structures present in poly(HAMCL) is given in Fig. 2. Also different degrees of unsaturation in poly(HAMCL) can be established relatively easily [3-5,34-39]. For example, the compositional data in Table 1 for the repeat units show that about 16% of the mono-unsaturated double bonds are incorporated when oleic acid is used as feedstock. When tall oil fatty acids are used, over 40 % of the subunits of the resulting poly(HAMCL) are mono- or di-unsaturated, while the total degree of unsaturation of the alkyl side chains of linseed oil-based PHA is even higher (>65%). Moreover, a substantial part (about 30%) of these unsaturated linseed oil-based poly(HAMCL) subunits have up to three double bonds present. [Pg.263]

Other octadecenoic acids carrying hydroxyl groups in the chain are present in the considered time range their formation derives from the oxidation of the unsaturated Cl8 FAs linoleic acid, linolenic acid and oleic acid. [Pg.207]

A term applied to the whole group of saturated and unsaturated monobasic aliphatic carboxylic acids. See Oleic Acid and Stearic Acid. [Pg.27]

Fatty acids have also been converted to difunctional monomers for polyanhydride synthesis by dimerizing the unsaturated erucic or oleic acid to form branched monomers. These monomers are collectively referred to as fatty acid dimers and the polymers are referred to as poly(fatty acid dimer) (PFAD). PFAD (erucic acid dimer) was synthesized by Domb and Maniar (1993) via melt polycondensation and was a liquid at room temperature. Desiring to increase the hydrophobicity of aliphatic polyanhydrides such as PSA without adding aromaticity to the monomers (and thereby increasing the melting point), Teomim and Domb (1999) and Krasko et al. (2002) have synthesized fatty acid terminated PSA. Octanoic, lauric, myristic, stearic, ricinoleic, oleic, linoleic, and lithocholic acid acetate anhydrides were added to the melt polycondensation reactions to obtain the desired terminations. As desired, a dramatic reduction in the erosion rate was obtained (Krasko et al., 2002 Teomim and Domb, 1999). [Pg.178]


See other pages where Oleic acid unsaturation is mentioned: [Pg.85]    [Pg.1624]    [Pg.16]    [Pg.160]    [Pg.266]    [Pg.85]    [Pg.1624]    [Pg.16]    [Pg.160]    [Pg.266]    [Pg.162]    [Pg.34]    [Pg.249]    [Pg.86]    [Pg.91]    [Pg.259]    [Pg.1999]    [Pg.218]    [Pg.240]    [Pg.794]    [Pg.113]    [Pg.191]    [Pg.191]    [Pg.163]    [Pg.203]    [Pg.168]    [Pg.282]    [Pg.111]    [Pg.106]    [Pg.209]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Acids, unsaturated

Oleic

Oleics

© 2024 chempedia.info