Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mothers

Mesotartaric acid crystallizes in plates (IHjO), m.p. 140 C (anhydrous). Very soluble in water. Obtained from the mother-liquors in the preparation of racemic acid or by oxidation of maleic acid. Potassium hydrogen mesotartrale is soluble in water. [Pg.385]

Figure 8 mother wavelet y/(t) (left) and wavelet built out of the mother wavelet by time shift b, and dilatation a. Both functions are represented in the time domain and the frequency domain. [Pg.360]

However, it is easily shown that if the mother wavelet is located in the frequency domain "around"/o (fig 8), then the wavelet a.b(t) is located around f(/a. That is to say, by the mean of the formal identification f = fata it is possible to interpret a time-scale representation as a time-frequency representation [4]. [Pg.360]

A measure of the time and frequency resolution of the mother wavelet is given respectively by ... [Pg.361]

To be more specific, given a mother wavelet with its own time and frequency properties, the small values of scale coefficient a (high frequencies) lead to high time resolution (and poor frequency resolution). Correspondingly, high values of the scale coefficient (low frequencies lead to high frequency resolution (and poor time resolution), (see figure 10)... [Pg.361]

The entire Hving and material world consists of compounds and mixtures of compounds. Basic chemicals, such as ethylene, are produced in many millions of tons each year and are converted into a wide variety of other chemicals. Complicated molecular structures are synthesized by Mother Nature, or by chemists having taken up the challenge posed by Nature. However, we also have materials such as glues which are composed of mixtures of rather ill-defined polymers. [Pg.1]

Wavelet transformation (analysis) is considered as another and maybe even more powerful tool than FFT for data transformation in chemoinetrics, as well as in other fields. The core idea is to use a basis function ("mother wavelet") and investigate the time-scale properties of the incoming signal [8], As in the case of FFT, the Wavelet transformation coefficients can be used in subsequent modeling instead of the original data matrix (Figure 4-7). [Pg.216]

A) A solid substance has crystallised from a solution, and it is necessary to separate the crystals (i.e., the solute) from the cold mother-liquor by filtration. [Pg.10]

A) Filtration of crystals from the cold mother-liquor. [Pg.10]

Students are familiar with the general process of recrystallisa-tion from their more elementary inorganic work. Friefly, it consists in first finding a solvent which will dissolve the crude material readily when hot, but only to a small extent when cold. The crude substance is then dissolved in a minimum of the boiling solvent, the solution filtered if necessary to remove any insoluble impurities, and then cooled, when the solute will crystallise out, leaving the greater part of the impurities in solution. The crop of crystals is then filtered off, and the process repeated until the crystals are pure, and all impurities remain in the mother-liquor. [Pg.13]

It is clear that repeated recrystallisation will rapidly leave B entirely in the mother-liquors, and thus provide a pure sample of A. [Pg.14]

When crystallisation is complete, the mixture of crystals and crude mother-liquor is filtered at the pump, again using a Buchner funnel and flask as described on p. 10, and the crystals remaining in the funnel are then pressed well down with a spatula whilst continual suction of the pump is applied, in order to drain the mother-liquor from the crystals as effectively as possible. If it has been found in the preliminary tests that the crystalline material is almost insoluble in the cold solvent, the crystals in the... [Pg.18]

If the mother-liquor from the crude product (together with the washings) is concentrated to nearly half its original volume by gentle distillation, and is then cooled and seeded with a trace of the first crop, a second and less pure crop of the a-methylglucoside is obtained. This should be purified by recrystallisation from the mother-liquor obtained from the recrystallisation of the first crop, and then if necessary recrystallised a second time from a small quantity of fresh methanol. Yield of second crop, about... [Pg.144]

The crude concentrated mother-liquor still contains some... [Pg.144]

The theory underlying the removal of impurities by crystaUisation may be understood from the following considerations. It is assumed that the impurities are present in comparatively small proportion—usually less than 5 per cent, of the whole. Let the pure substance be denoted by A and the impurities by B, and let the proportion of the latter be assumed to be 5 per cent. In most instances the solubilities of A (SJ and of B (/Sb) are different in a particular solvent the influence of each compound upon the solubility of the other will be neglected. Two cases will arise for an3 particular solvent (i) the impurity is more soluble than the compound which is being purified (/Sg > SA and (ii) the impurity is less soluble than the compound Sg < S ). It is evident that in case (i) several recrystallisations will give a pure sample of A, and B will remain in the mother liquors. Case (ii) can be more clearly illustrated by a specific example. Let us assume that the solubility of A and 5 in a given solvent at the temperature of the laboratory (15°) are 10 g. and 3 g. per 100 ml. of solvent respectively. If 50 g. of the crude material (containing 47 5 g. of A and 2-5 g. of B) are dissolved in 100 ml. of the hot solvent and the solution allowed to cool to 15°, the mother liquor will contain 10 g. of A and 2-5 g. (i.e., the whole) of B 37-5 g. of pure crystals of A will be obtained. [Pg.123]

The technique of the filtration of hot solutions has already been described in Section 11,28. The filtration of cold solutions will now be considered this operation is usually carried out when it is desired to separate a crystalline solid from the mother liquor in which it is suspended. When substantial quantities of a solid are to be handled, a Buchner funnel of convenient size is employed. The ordinary Buchner fimnel (Fig. 11,1, 7, a) consists of a cylindrical porcelain funnel carrying a fixed, flat, perforated porcelain plate. It is fitted by means of a rubber stopper or a good cork into the neck of a thick-walled filtering flask (also termed filter flask, Buchner flask or suction flask) (Fig. 11,1, 7, c), which is connected by means of thick-walled rubber tubing (rubber pressure tubing) to a similar flask or safety bottle, and the latter is attached by rubber pressure tubing to a filter pump the safety bottle or trap is essential since a sudden fall in water pressure may result in the water sucking back. The use of suction renders rapid filtration possihle... [Pg.130]

If the filtrate is of value, it should be transferred to another vessel immediately the crystals have been drained. Frequently, the mother liquor may be con centra ted (suitable precautions being, of course, taken if it is inflammable), and a further crop of crystals obtained. Occasionally, yet another crop may be produced. The crops thus isolated are generally less pure than the first crystals which separate, and should be recrystaUised from fresh solvent the purity is checked by a melting point determination. [Pg.131]

When the volume of mother liquor is large and the amount of crystals small, the apparatus of Fig. II, 32, 1 may be used. The large pear-shaped receiver is supported on a metal ring attached to a stand. When the receiver is about two-thirds fuU, atmospheric pressure is restored by suitably rotating the three-way stopcock the filtrate may then be removed by opening the tap at the lower end. The apparatus is again exhausted and the filtration continued. [Pg.131]

After the main filtrate has been removed, the crystals should be washed in order to remove the mother liquor which, on drying, would contaminate the crystals. The wash liquid will normally be the same solvent as was used for recrystallisation, and must be used in the smallest possible... [Pg.131]

In order to dry the crystals, the Buchner funnel is inverted over two or three thicknesses of drying paper (i.e., coarse-grained, smooth surfaced Alter paper) resting upon a pad of newspaper, and the crystalline cake is removed with the aid of a clean spatula several sheets of drying paper are placed on top and the crystals are pressed flrmly. If the sheets become too soiled by the mother liquor absorbed, the crystals should be transferred to fresh paper. The disadvantage of this method of rapid drying is that the recrystallised product is liable to become contaminated with the Alter paper flbre. [Pg.132]

The apparatus depicted in Fig. 11,34, 1, intended for advanced students, may be used for the filtration of a small quantity of crystals suspended in a solvent either a Hirsch funnel or a glass funnel with Witt filter plate is employed. The mixture of crystals and mother liquor is filtered as usual through the funnel with suction. Rotation of the three-way tap wifi allow air to enter the filter cylinder, thus permitting the mother liquor to be drawn oflF by opening the lower tap. The mother liquor can then be applied for rinsing out the residual crystals in the vessel, and the mixture is again filtered into the cylinder. When all the crystals have been transferred to the funnel and thoroughly drained, the mother liquor may be transferred to another vessel the crystals may then be washed as already described (Section 11,32). [Pg.133]

By inclining the flask A, applying suction at 3 and connecting 1 to a source of inert gas, the mother liquor may be drawn into the sintered glass funnel C without the... [Pg.135]

A further 25 g. of cyanoacetamide may be obtained by evaporating the original mother liquor to dryness under reduced pressure (water pump) whilst heating the flask on a steam bath. The residue is dissolved in 50 ml. of hot ethanol, the solution shaken for a few minutes with decolourising carbon, Altered with suction whilst hot, and then cooled in ice. The resulting yellowish amide is recrystallised with the addition of decolourising carbon, if necessary. [Pg.434]

Mix together in a 250 ml. flask carrying a reflux condenser and a calcium chloride drying tube 25 g. (32 ml.) of freshly-distilled acetaldehyde with a solution of 59-5 g. of dry, powdered malonic acid (Section 111,157) in 67 g. (68-5 ml.) of dry pyridine to which 0-5 ml. of piperidine has been added. Leave in an ice chest or refrigerator for 24 hours. Warm the mixture on a steam bath until the evolution of carbon dioxide ceases. Cool in ice, add 60 ml. of 1 1 sulphuric acid (by volume) and leave in the ice bath for 3-4 hours. Collect the crude crotonic acid (ca. 27 g.) which has separated by suction filtration. Extract the mother liquor with three 25 ml. portions of ether, dry the ethereal extract, and evaporate the ether the residual crude acid weighs 6 g. Recrystallise from light petroleum, b.p. 60-80° the yield of erude crotonic acid, m.p. 72°, is 20 g. [Pg.464]

Introduce 197 g. of anhydrous brucine or 215 g. of the air-dried dihydrate (4) into a warm solution of 139 g. of dZ-acc.-octyl hj drogen phthalate in 300 ml. of acetone and warm the mixture vmder reflux on a water bath until the solution is clear. Upon cooling, the brucine salt (dA, IB) separates as a crystalline solid. Filter this off on a sintered glass funnel, press it well to remove mother liquor, and wash it in the funnel with 125 ml. of acetone. Set the combined filtrate and washings (W) aside. Cover the crystals with acetone and add, slowly and with stirriug, a slight excess (to Congo red) of dilute hydrochloric acid (1 1 by volume about 60 ml.) if the solution becomes turbid before the introduction of... [Pg.506]

Place 84 g. of iron filings and 340 ml. of water in a 1 - 5 or 2-litre bolt-head flask equipped with a mechanical stirrer. Heat the mixture to boiling, stir mechanically, and add the sodium m-nitrobenzenesulphonate in small portions during 1 hour. After each addition the mixture foams extensively a wet cloth should be applied to the neck of the flask if the mixture tends to froth over the sides. Replace from time to time the water which has evaporated so that the volume is approximately constant. When all the sodium salt has been introduced, boU the mixture for 20 minutes. Place a small drop of the suspension upon filter paper and observe the colour of the spot it should be a pale brown but not deep brown or deep yellow. If it is not appreciably coloured, add anhydrous sodium carbonate cautiously, stirring the mixture, until red litmus paper is turned blue and a test drop upon filter paper is not blackened by sodium sulphide solution. Filter at the pump and wash well with hot water. Concentrate the filtrate to about 200 ml., acidify with concentrated hydrochloric acid to Congo red, and allow to cool. Filter off the metanilic acid and dry upon filter paper. A further small quantity may be obtained by concentrating the mother liquid. The yield is 55 g. [Pg.589]


See other pages where Mothers is mentioned: [Pg.112]    [Pg.271]    [Pg.360]    [Pg.360]    [Pg.362]    [Pg.504]    [Pg.592]    [Pg.10]    [Pg.11]    [Pg.14]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.235]    [Pg.123]    [Pg.129]    [Pg.131]    [Pg.135]    [Pg.199]    [Pg.200]    [Pg.232]    [Pg.415]    [Pg.527]    [Pg.551]    [Pg.568]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Adhering mother liquor

Adolescent mothers

Alcoholic mother

Analysis of First Mother Liquor

Analysis of Second Mother Liquor

Cocaine pregnant mothers

Crystals mother liquor

Drug therapy nursing mothers

Earth Mother

Ganglion mother cells

Great Mother

Guard cell mother cells

Haustorial mother cells

Head circumference mother

Infants Mother-infant interaction

Iodine deficiency disorder mothers

MADD (Mothers Against

Mental health mother

Methadone mothers

Mother LEAD EXPOSURE

Mother Merck

Mother Project

Mother cells

Mother colony

Mother educational status

Mother height

Mother infant interactions

Mother lamellae

Mother liquor definition

Mother liquor holding crystals

Mother liquor samples

Mother liquor, defined

Mother liquors

Mother liquors, purification

Mother lode

Mother love

Mother model

Mother nuclide

Mother of all sciences

Mother of vinegar

Mother pitch

Mother populations

Mother solution

Mother tincture

Mother wavelet

Mother wavelet scaling

Mother, condition

Mother-baby bonding

Mother-daughter

Mother-daughter correlations

Mother-goddess

Mother-of-pearl

Mother-young interactions

Mother/child bond

Mothers Against Drunk Driving

Mothers Against Drunk Driving MADD)

Mothers adoption studies

Mothers aggressive

Mothers children

Mothers expectant

Mothers milk

Mothers milk bromide influence

Mothers milk bromide transfer through

Mothers milk iodine content

Mothers milk iodine transfer

Mothers/motherhood

Mother’s milk

Nursing mothers

Nursing mothers, risk assessment

Oligomer Synthesis - Improving on Mother Nature

P4O10 (P2O5), The Mother of All Condensed Phosphates

Parents mother

Pregnancy monitoring mothers

Pregnant mothers

Queen Mother, head

Radionuclides mother

Refrigerator mother

SUBJECTS mother cell

Sodium Azide, Plant Analytical Procedures Analysis of First Mother Liquor

Sodium Azide, Plant Analytical Procedures Analysis of Second Mother Liquor

Stature mother

The Co-Emergent Mother

The Great Mother

Therapy in Nursing Mothers

Transport from mother to fetus

Vinegar mother

Wavelet mother function

Wavelet mother, selection

Working Mother

© 2024 chempedia.info