Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquor mother

Mesotartaric acid crystallizes in plates (IHjO), m.p. 140 C (anhydrous). Very soluble in water. Obtained from the mother-liquors in the preparation of racemic acid or by oxidation of maleic acid. Potassium hydrogen mesotartrale is soluble in water. [Pg.385]

A) A solid substance has crystallised from a solution, and it is necessary to separate the crystals (i.e., the solute) from the cold mother-liquor by filtration. [Pg.10]

A) Filtration of crystals from the cold mother-liquor. [Pg.10]

Students are familiar with the general process of recrystallisa-tion from their more elementary inorganic work. Friefly, it consists in first finding a solvent which will dissolve the crude material readily when hot, but only to a small extent when cold. The crude substance is then dissolved in a minimum of the boiling solvent, the solution filtered if necessary to remove any insoluble impurities, and then cooled, when the solute will crystallise out, leaving the greater part of the impurities in solution. The crop of crystals is then filtered off, and the process repeated until the crystals are pure, and all impurities remain in the mother-liquor. [Pg.13]

It is clear that repeated recrystallisation will rapidly leave B entirely in the mother-liquors, and thus provide a pure sample of A. [Pg.14]

When crystallisation is complete, the mixture of crystals and crude mother-liquor is filtered at the pump, again using a Buchner funnel and flask as described on p. 10, and the crystals remaining in the funnel are then pressed well down with a spatula whilst continual suction of the pump is applied, in order to drain the mother-liquor from the crystals as effectively as possible. If it has been found in the preliminary tests that the crystalline material is almost insoluble in the cold solvent, the crystals in the... [Pg.18]

If the mother-liquor from the crude product (together with the washings) is concentrated to nearly half its original volume by gentle distillation, and is then cooled and seeded with a trace of the first crop, a second and less pure crop of the a-methylglucoside is obtained. This should be purified by recrystallisation from the mother-liquor obtained from the recrystallisation of the first crop, and then if necessary recrystallised a second time from a small quantity of fresh methanol. Yield of second crop, about... [Pg.144]

The crude concentrated mother-liquor still contains some... [Pg.144]

The theory underlying the removal of impurities by crystaUisation may be understood from the following considerations. It is assumed that the impurities are present in comparatively small proportion—usually less than 5 per cent, of the whole. Let the pure substance be denoted by A and the impurities by B, and let the proportion of the latter be assumed to be 5 per cent. In most instances the solubilities of A (SJ and of B (/Sb) are different in a particular solvent the influence of each compound upon the solubility of the other will be neglected. Two cases will arise for an3 particular solvent (i) the impurity is more soluble than the compound which is being purified (/Sg > SA and (ii) the impurity is less soluble than the compound Sg < S ). It is evident that in case (i) several recrystallisations will give a pure sample of A, and B will remain in the mother liquors. Case (ii) can be more clearly illustrated by a specific example. Let us assume that the solubility of A and 5 in a given solvent at the temperature of the laboratory (15°) are 10 g. and 3 g. per 100 ml. of solvent respectively. If 50 g. of the crude material (containing 47 5 g. of A and 2-5 g. of B) are dissolved in 100 ml. of the hot solvent and the solution allowed to cool to 15°, the mother liquor will contain 10 g. of A and 2-5 g. (i.e., the whole) of B 37-5 g. of pure crystals of A will be obtained. [Pg.123]

The technique of the filtration of hot solutions has already been described in Section 11,28. The filtration of cold solutions will now be considered this operation is usually carried out when it is desired to separate a crystalline solid from the mother liquor in which it is suspended. When substantial quantities of a solid are to be handled, a Buchner funnel of convenient size is employed. The ordinary Buchner fimnel (Fig. 11,1, 7, a) consists of a cylindrical porcelain funnel carrying a fixed, flat, perforated porcelain plate. It is fitted by means of a rubber stopper or a good cork into the neck of a thick-walled filtering flask (also termed filter flask, Buchner flask or suction flask) (Fig. 11,1, 7, c), which is connected by means of thick-walled rubber tubing (rubber pressure tubing) to a similar flask or safety bottle, and the latter is attached by rubber pressure tubing to a filter pump the safety bottle or trap is essential since a sudden fall in water pressure may result in the water sucking back. The use of suction renders rapid filtration possihle... [Pg.130]

If the filtrate is of value, it should be transferred to another vessel immediately the crystals have been drained. Frequently, the mother liquor may be con centra ted (suitable precautions being, of course, taken if it is inflammable), and a further crop of crystals obtained. Occasionally, yet another crop may be produced. The crops thus isolated are generally less pure than the first crystals which separate, and should be recrystaUised from fresh solvent the purity is checked by a melting point determination. [Pg.131]

When the volume of mother liquor is large and the amount of crystals small, the apparatus of Fig. II, 32, 1 may be used. The large pear-shaped receiver is supported on a metal ring attached to a stand. When the receiver is about two-thirds fuU, atmospheric pressure is restored by suitably rotating the three-way stopcock the filtrate may then be removed by opening the tap at the lower end. The apparatus is again exhausted and the filtration continued. [Pg.131]

After the main filtrate has been removed, the crystals should be washed in order to remove the mother liquor which, on drying, would contaminate the crystals. The wash liquid will normally be the same solvent as was used for recrystallisation, and must be used in the smallest possible... [Pg.131]

In order to dry the crystals, the Buchner funnel is inverted over two or three thicknesses of drying paper (i.e., coarse-grained, smooth surfaced Alter paper) resting upon a pad of newspaper, and the crystalline cake is removed with the aid of a clean spatula several sheets of drying paper are placed on top and the crystals are pressed flrmly. If the sheets become too soiled by the mother liquor absorbed, the crystals should be transferred to fresh paper. The disadvantage of this method of rapid drying is that the recrystallised product is liable to become contaminated with the Alter paper flbre. [Pg.132]

The apparatus depicted in Fig. 11,34, 1, intended for advanced students, may be used for the filtration of a small quantity of crystals suspended in a solvent either a Hirsch funnel or a glass funnel with Witt filter plate is employed. The mixture of crystals and mother liquor is filtered as usual through the funnel with suction. Rotation of the three-way tap wifi allow air to enter the filter cylinder, thus permitting the mother liquor to be drawn oflF by opening the lower tap. The mother liquor can then be applied for rinsing out the residual crystals in the vessel, and the mixture is again filtered into the cylinder. When all the crystals have been transferred to the funnel and thoroughly drained, the mother liquor may be transferred to another vessel the crystals may then be washed as already described (Section 11,32). [Pg.133]

By inclining the flask A, applying suction at 3 and connecting 1 to a source of inert gas, the mother liquor may be drawn into the sintered glass funnel C without the... [Pg.135]

A further 25 g. of cyanoacetamide may be obtained by evaporating the original mother liquor to dryness under reduced pressure (water pump) whilst heating the flask on a steam bath. The residue is dissolved in 50 ml. of hot ethanol, the solution shaken for a few minutes with decolourising carbon, Altered with suction whilst hot, and then cooled in ice. The resulting yellowish amide is recrystallised with the addition of decolourising carbon, if necessary. [Pg.434]

Mix together in a 250 ml. flask carrying a reflux condenser and a calcium chloride drying tube 25 g. (32 ml.) of freshly-distilled acetaldehyde with a solution of 59-5 g. of dry, powdered malonic acid (Section 111,157) in 67 g. (68-5 ml.) of dry pyridine to which 0-5 ml. of piperidine has been added. Leave in an ice chest or refrigerator for 24 hours. Warm the mixture on a steam bath until the evolution of carbon dioxide ceases. Cool in ice, add 60 ml. of 1 1 sulphuric acid (by volume) and leave in the ice bath for 3-4 hours. Collect the crude crotonic acid (ca. 27 g.) which has separated by suction filtration. Extract the mother liquor with three 25 ml. portions of ether, dry the ethereal extract, and evaporate the ether the residual crude acid weighs 6 g. Recrystallise from light petroleum, b.p. 60-80° the yield of erude crotonic acid, m.p. 72°, is 20 g. [Pg.464]

Introduce 197 g. of anhydrous brucine or 215 g. of the air-dried dihydrate (4) into a warm solution of 139 g. of dZ-acc.-octyl hj drogen phthalate in 300 ml. of acetone and warm the mixture vmder reflux on a water bath until the solution is clear. Upon cooling, the brucine salt (dA, IB) separates as a crystalline solid. Filter this off on a sintered glass funnel, press it well to remove mother liquor, and wash it in the funnel with 125 ml. of acetone. Set the combined filtrate and washings (W) aside. Cover the crystals with acetone and add, slowly and with stirriug, a slight excess (to Congo red) of dilute hydrochloric acid (1 1 by volume about 60 ml.) if the solution becomes turbid before the introduction of... [Pg.506]

Concentrate the mother liquors from this recrystallisation and combine with the oily filtrate dissolve in 250 ml. of 10 per cent, sodium hydroxide solution, and extract with two 50 ml. portions of ether to remove non-phenolic products. Acidify the alkaline solution with hydrochloric acid, separate the oily layer, dry it over anhydrous magnesium sulphate, and distil under diminished pressure, preferably from a Claisen flask with fractionating side arm (Figs. II, 24, 2-5). Collect the o-propiophenol (65 g.) at 110-115°/6 mm. and a further quantity (20 g.) of crude p-propiophenol at 140-150°/ 1 mm. [Pg.676]

Method 2. Place 0-2 g. of cupric acetate, 10 g. of ammonium nitrate, 21 2 g. of benzoin and 70 ml. of an 80 per cent, by volume acetic acid -water solution in a 250 ml. flask fitted with a reflux condenser. Heat the mixture with occasional shaking (1). When solution occurs, a vigorous evolution of nitrogen is observed. Reflux for 90 minutes, cool the solution, seed the solution with a crystal of benzil (2), and allow to stand for 1 hour. Filter at the pump and keep the mother liquor (3) wash well with water and dry (preferably in an oven at 60°). The resulting benzil has m.p. 94-95° and the m.p. is unaffected by recrystallisation from alcohol or from carbon tetrachloride (2 ml. per gram). Dilution of the mother liquor with the aqueous washings gives a further 1 Og. of benzil (4). [Pg.715]

The mother liquor should not be concentrated as an explosion may result. [Pg.715]

Place 25 g. of phenylacetic acid (Section IV,160) in a 500 ml. round-bottomed flask, cool the latter in running water and add 250 ml. of fuming nitric acid, rather slowly at first and then more rapidly. The addition occupies about 15 minutes. Attach a condenser to the flask, reflux the solution for 1 hour, and pour into about 500 ml. of cold water. When cold, filter the crude 2 4-dinitrophenylacetic acid at the pump and wash it with cold water the resulting acid, after drying at 100°, is almost pure (m.p. 181°) and weighs 31 g. Recrystallise it from 300 ml, of 20 per cent, alcohol. Collect the first main crop (25 g.), and allow the mother liquor to stand overnight when a further 2 g. of pure acid is obtained dry at 100°, The yield of pure 2 4-dinitrophenylacetic acid, m.p. 183°, is 27 g. [Pg.758]

Phthalide. In a 1 litre bolt-head flask stir 90 g. of a high quality zinc powder to a thick paste with a solution of 0 5 g. of crystallised copper sulphate in 20 ml. of water (this serves to activate the zinc), and then add 165 ml. of 20 per cent, sodium hydroxide solution. Cool the flask in an ice bath to 5°, stir the contents mechanically, and add 73-5 g. of phthalimide in small portions at such a rate that the temperature does not rise above 8° (about 30 minutes are required for the addition). Continue the stirring for half an hour, dilute with 200 ml. of water, warm on a water bath imtil the evolution of ammonia ceases (about 3 hours), and concentrate to a volume of about 200 ml. by distillation vmder reduced pressure (tig. 11,37, 1). Filter, and render the flltrate acid to Congo red paper with concentrated hydrochloric acid (about 75 ml. are required). Much of the phthalide separates as an oil, but, in order to complete the lactonisation of the hydroxymethylbenzoic acid, boil for an hour transfer while hot to a beaker. The oil solidifles on cooling to a hard red-brown cake. Leave overnight in an ice chest or refrigerator, and than filter at the pump. The crude phthalide contains much sodium chloride. RecrystaUise it in 10 g. portions from 750 ml. of water use the mother liquor from the first crop for the recrystaUisation of the subsequent portion. Filter each portion while hot, cool in ice below 5°, filter and wash with small quantities of ice-cold water. Dry in the air upon filter paper. The yield of phthalide (transparent plates), m.p. 72-73°, is 47 g. [Pg.772]

Mix 42 5 g. of acetone cyanohydrin (Section 111,75) and 75 g. of freshly powdered ammonium carbonate in a small beaker, warm the mixture on a water bath FUME CUPBOARD) and stir with a thermometer. Gentle action commences at 50° and continues during about 3 hours at 70-80°. To complete the reaction, raise the temperature to 90° and maintain it at this point until the mixture is quiescent (ca. 30 minutes). The colourless (or pale yellow) residue solidifies on coohng. Dissolve it in 60 ml. of hot water, digest with a little decolourising carbon, and filter rapidly through a pre-heated Buchner funnel. Evaporate the filtrate on a hot plate until crystals appear on the surface of the liquid, and then cool in ice. Filter off the white crystals with suction, drain well, and then wash twice with 4 ml. portions of ether this crop of crystals of dimethylhydantoin is almost pure and melts at 176°. Concentrate the mother liquor to the crj staUisation point, cool in ice, and collect the... [Pg.843]


See other pages where Liquor mother is mentioned: [Pg.112]    [Pg.10]    [Pg.11]    [Pg.14]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.235]    [Pg.123]    [Pg.129]    [Pg.131]    [Pg.135]    [Pg.199]    [Pg.200]    [Pg.232]    [Pg.415]    [Pg.551]    [Pg.568]    [Pg.646]    [Pg.678]    [Pg.735]    [Pg.762]    [Pg.767]    [Pg.795]    [Pg.848]    [Pg.853]   
See also in sourсe #XX -- [ Pg.131 ]

See also in sourсe #XX -- [ Pg.44 , Pg.45 , Pg.46 , Pg.49 , Pg.52 , Pg.53 ]




SEARCH



Liquor

Mother

© 2024 chempedia.info