Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol, production pressure effect

Again consider the modified system configuration described in the previous problem and estimate the effects of temperature and pressure on conversion. Do this by calculating CO and H conversions and methanol production for the following conditions ... [Pg.599]

Another synthesis process proposed to receive benefits from operating with monolith catalysts is the conversion of methanol for gasoline production [16,17J. The catalyst used was the ZSM-5 zeolite. However, rather than binding the catalyst onto the wall by use of a washcoat, it was uniformly crystallized on the cordierite honeycomb (62 cells/cm ) wall surfaces (up to 30% by weight), similar to the method described in the patent assigned to Lachman and Patil [18]. The effects of methanol partial pressure on conversion and temperature on hydrocarbon selectivity were determined. Three regimes of mass transfer resistances are experienced in this reaction reactant transfer to the reactor walls within the monolith channels through the laminar flow, diffusion resistance at the surface between zeolite crystals on the walls, and diffusion into the zeolite molecular-size pores to the active sites within the crystals, where the reaction rate limit is anticipated. [Pg.200]

Fig. 6 shows the results for an operatir>g pressure of 5.27 MPa., an initial operating temperature of 498 K, and three different space velocities. At the right-hand terminus of each of the three lines in Rg. 6, temperature programming can no longer maintain a constant production rate. An increase in temperature beyond the terminal point increases the rate constant, k. but this effect Is exactly counterbalanced by a decrease of the equilibrium constant, K q. At these conditions, which are representative of commercial reactor designs, temperature programming cannot be used to maintain constant methanol production because the production rate cannot be held constant for a sufficiently-long period of time. [Pg.354]

The discussion of MTG kinetic effects just presented is generally applicable to MTO. Olefin selectivity is improved by decreasing methanol partial pressure, increasing temperature, and increasing zeoUte Si02/Al203. An additional effect, that of varying zeolite crystallite size, was reported by Howden et al [61], who found that when the crystallite size was reduced from 30 to 3 pm, ethylene selectivity increased. This was attributed to enhanced diffusivity of li t products, which reduces their opportunity for further reaction. [Pg.160]

The possibility of initiating the partial oxidation of methane with ozone under flow conditions at P = 1.5 atm was considered in [169]. Although ozone significantly promotes the reaction and enhances the methanol yield, a selectivity of >42% was achieved only at a methane conversion of less than 1%, which then decreased rapidly with increasing conversion. Promotion of methanol production at high pressures, favourable for this process, requires effective methods for ozone synthesis under these conditions. [Pg.130]

The methanol carbonylation is performed ia the presence of a basic catalyst such as sodium methoxide and the product isolated by distillation. In one continuous commercial process (6) the methyl formate and dimethylamine react at 350 kPa (3.46 atm) and from 110 to 120°C to effect a conversion of about 90%. The reaction mixture is then fed to a reactor—stripper operating at about 275 kPa (2.7 atm), where the reaction is completed and DMF and methanol are separated from the lighter by-products. The cmde material is then purified ia a separate distillation column operating at atmospheric pressure. [Pg.513]

The mixture is decanted into an Erlenmeyer flask, the residual green salts are washed with two 15-ml portions of acetone, and the washings are added to the main acetone solution. Cautiously, sodium bicarbonate (approx. 13 g) is added to the solution with swirling until the pH of the reaction mixture is neutral. The suspension is filtered, and the residue is washed with 10-15 ml of acetone. The filtrate is transferred to a round-bottom flask and concentrated on a rotary evaporator under an aspirator while the flask temperature is maintained at about 50°. The flask is cooled and the residue transferred to a separatory funnel, (If solidification occurs, the residue may be dissolved in ether to effect the transfer.) To the funnel is added 100 ml of saturated sodium chloride solution, and the mixture is extracted with two 50-ml portions of ether. The ether extracts are combined, washed with several 5-ml portions of water, dried over anhydrous magnesium sulfate, and filtered into a round-bottom flask. The ether may be distilled away at atmospheric pressure (steam bath) or evaporated on a rotary evaporator. On cooling, the residue should crystallize. If it does not, it may be treated with 5 ml of 30-60° petroleum ether, and crystallization may be induced by cooling and scratching. The crystalline product is collected by filtration and recrystallized from aqueous methanol. 4-r-Butylcyclohexanone has mp 48-49° (yield 60-90 %). [Pg.4]

We have now found that replacing water in the melt by methanol leads to large increases in pyridine solubility of product from the treatment, even without tetralin addition. In this paper we characterize the effects of temperature, time, hydrogen pressure, reaction stoichiometry, and addition of various inorganic and organic additives. Because oxygen removal Present Address Chevron Research Co., Box 1627, Richmond, CA 94804. [Pg.226]

We have reported the first example of a ring-opening metathesis polymerization in C02 [144,145]. In this work, bicyclo[2.2.1]hept-2-ene (norbornene) was polymerized in C02 and C02/methanol mixtures using a Ru(H20)6(tos)2 initiator (see Scheme 6). These reactions were carried out at 65 °C and pressure was varied from 60 to 345 bar they resulted in poly(norbornene) with similar conversions and molecular weights as those obtained in other solvent systems. JH NMR spectroscopy of the poly(norbornene) showed that the product from a polymerization in pure methanol had the same structure as the product from the polymerization in pure C02. More interestingly, it was shown that the cis/trans ratio of the polymer microstructure can be controlled by the addition of a methanol cosolvent to the polymerization medium (see Fig. 12). The poly(norbornene) prepared in pure methanol or in methanol/C02 mixtures had a very high trans-vinylene content, while the polymer prepared in pure C02 had very high ds-vinylene content. These results can be explained by the solvent effects on relative populations of the two different possible metal... [Pg.133]

Chemat and his collaborators [92] reported the UV- and MW-induced rearrangement of 2-benzoyloxyacetophenone, in the presence of bentonite, into l-(o-hydroxy-phenyl)-3-phenylpropane-l,3-dione in methanol at atmospheric pressure (Sch. 14.2). The reaction, performed in the reactor shown in Fig. 14.7, was subject to a significant activation effect under simultaneous UV and MW irradiation this corresponded at least to the sum of the individual effects (Fig. 14.11). The rearrangement, however, was not studied in further detail. Such competitive processes can be described by the diagram in Fig. 14.9, because the product obtained from both types of activation was the same. [Pg.475]

The only dependencies noted in the kinetic studies were first-order dependencies on iodide promoter and rhodium concentrations. Thus there was no observed effect of varying methanol concentration, and the partial pressure of carbon monoxide had no effect on the reaction rate. Similarly, the concentration of the products, methyl acetate and acetic acid, has no effect on the reaction rate. Thus we have the unusual situation of a reaction, CH3OH + CO — CH3COzH, in which the concentrations of the reactants and product have no kinetic influence. [Pg.257]

Although related reactions have also been done under low pressures/ very low rates of product formation are observed (8/10/11). We have found/ however, that a ruthenium carbonyl catalyst is quite active for converting H2/CO to methanol under moderate pressures (below 340 atm). More significantly, we also discovered that an ethylene glycol product could be obtained from this catalyst by use of carboxylic acid promoters or solvents (12) This remarkable and intriguing promoter effect deserved, we felt, further mechanistic investigation... [Pg.213]

The effects of added C02 on mass transfer properties and solubility were assessed in some detail for the catalytic asymmetric hydrogenation of 2-(6 -meth-oxy-2 -naphthyl) acrylic acid to (Sj-naproxen using Ru-(S)-BINAP-type catalysts in methanolic solution. The catalytic studies showed that a higher reaction rate was observed under a total C02/H2 pressure of ca. 100 bar (pH2 = 50bar) than under a pressure of 50 bar H2 alone. Upon further increase of the C02 pressure, the catalyst could be precipitated and solvent and product were removed, at least partly by supercritical extraction. Unfortunately, attempts to re-use the catalyst were hampered by its deactivation during the recycling process [11]. [Pg.1370]

The catalytic isomerization of 1-methylnaphthalene and all lation of 2-methylnaphtha-lene with methanol were studied at ambient pressure in a flow-type fixed bed reactor. Acid zeolites with a Spaciousness Index between ca. 2 and 16 were found to be excellent isomerization catalysts which completely suppress the undesired disproportionation into nwhthalene and dimethylnaphthalenes due to transition state shape selectivity. Examples are HZSM-12, H-EU-1 and H-Beta. Optimum catalysts for the shape selective methylation of 2-methylnaphthalene are HZSM-5 and HZSM-li. All experimental finding concerning this reaction can be readily accounted for by conventional product shape selectivity combined with coke selectivation, so there is no need for invoking shape selectivity effects at the external surface or "nest effects", at variance with recent pubhcations from other groups. [Pg.291]

It is necessary, however, to maximize the intermediate olefin product at the expense of the aromatic/paraffin product which makes up the gasoline ( ). The olefin yield increases with increasing temperature and decreasing pressure and contact time. Judicious selection of process conditions result in high olefin selectivity and complete methanol conversion. The detailed effect of temperature, pressure, space velocity and catalyst silica/alumina ratio on conversion and selectivity has been reported earlier ( ). The distribution of products from a typical MTO experiment is compared to MTG in Figure 4. Propylene is the most abundant species produced at MTO conditions and greatly exceeds its equilibrium value as seen in the table below for 482 C. It is apparently the product of autocatalytic reaction (7) between ethylene and methanol (8). [Pg.37]

Table I shows the effects of Mel/DME and CO/DME ratios in the feed gas on product yields. With increasing Mel/DME ratio both methyl acetate yield and selectivity increased. The yield of methyl acetate increased with an increase in the CO/DME ratio whereas its selectivity decreased. In the case of methanol carbonylation on Ni/A.C. catalyst, the product yield and selectivity were strongly affected by CO/MeOH ratio but not by Mel/MeOH ratio (14-16). The promoting effect of methyl iodide on the methanol carbonylation reached a maximum at a very low partial pressure, that is 0.1 atm or lower. However, both CO/DME and Mel/DME ratios were important for regulating the product yield and selectivity of the dimethyl ether carbonylation. This suggests that the two steps, namely, the dissociative adsorption of methyl iodide on nickel (Equation 4) and the insertion of CO (Equation 5) are slow in the case of dimethyl ether reaction. Table I shows the effects of Mel/DME and CO/DME ratios in the feed gas on product yields. With increasing Mel/DME ratio both methyl acetate yield and selectivity increased. The yield of methyl acetate increased with an increase in the CO/DME ratio whereas its selectivity decreased. In the case of methanol carbonylation on Ni/A.C. catalyst, the product yield and selectivity were strongly affected by CO/MeOH ratio but not by Mel/MeOH ratio (14-16). The promoting effect of methyl iodide on the methanol carbonylation reached a maximum at a very low partial pressure, that is 0.1 atm or lower. However, both CO/DME and Mel/DME ratios were important for regulating the product yield and selectivity of the dimethyl ether carbonylation. This suggests that the two steps, namely, the dissociative adsorption of methyl iodide on nickel (Equation 4) and the insertion of CO (Equation 5) are slow in the case of dimethyl ether reaction.
Carbonylation of methanol to form acetic acid has been performed industrially using carbonyl complexes of cobalt ( ) or rhodium (2 ) and iodide promoter in the liquid phase. Recently, it has been claimed that nickel carbonyl or other nickel compounds are effective catalysts for the reaction at pressure as low as 30 atm (2/4), For the rhodium catalyst, the conditions are fairly mild (175 C and 28 atm) and the product selectivity is excellent (99% based on methanol). However, the process has the disadvantages that the proven reserves of rhodium are quite limited in both location and quantity and that the reaction medium is highly corrosive. It is highly desirable, therefore, to develop a vapor phase process, which is free from the corrosion problem, utilizing a base metal catalyst. The authors have already reported that nickel on activated carbon exhibits excellent catalytic activity for the carbonylation of... [Pg.208]

Activity Measurements. To test catalytic properties of various samples partial oxidation of methanol to formaldehyde was studied in a flow micro-reactor operating under normal atmospheric pressure (10). For each run about 0.2 g of catalyst sample was used and the activities were measured at 173 C in the absence of any diffusional effects. The feed gas consisted of 72, 2 and by volume of nitrogen, oxygen and methanol vapor respectively. Reaction products were analysed with a 10% Carbowax 20 M column (2m long) maintained at 60 C oven temperature. [Pg.206]


See other pages where Methanol, production pressure effect is mentioned: [Pg.618]    [Pg.220]    [Pg.51]    [Pg.418]    [Pg.59]    [Pg.100]    [Pg.353]    [Pg.187]    [Pg.119]    [Pg.181]    [Pg.354]    [Pg.33]    [Pg.30]    [Pg.167]    [Pg.1653]    [Pg.33]    [Pg.667]    [Pg.346]    [Pg.155]    [Pg.117]    [Pg.170]    [Pg.24]    [Pg.88]    [Pg.70]    [Pg.115]    [Pg.90]    [Pg.172]    [Pg.184]    [Pg.99]    [Pg.174]    [Pg.62]   
See also in sourсe #XX -- [ Pg.60 , Pg.108 ]




SEARCH



Methanol pressures

Pressurized products

Product effect

© 2024 chempedia.info