Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product shape selectivity

The selective oxidations of the terminal positions of -alkanes are an example of substrate-shape selectivity. Product-shape selectivity has been used to enhance the selectivity of the type IIaRH oxidation of cyclohexane [66-68], For example, oxidation of cyclohexane at 373 K for 8 hr using FeAlPO-31 (pore aperture 5.4 A) as a catalyst resulted in 2.5% conversion to a mixture which contained 55.3% of adipic acid and 37.3% of a mixture of cyclohexanol and cyclohexanone [68]. In contrast, oxidation under identical conditions using FeAlPO-5 (pore aperture 7.3 A) resulted in only 9.2% of adipic acid and 89.5%... [Pg.300]

Control of the selectivity in catalytic reactions is one of the challenging topics. For example, the shape selectivity in catalytic reactions was described for the first time by Mobil research workers [3]. At the present, some categories of shape selectivity have been described in the literatures, i.e. reactant shape selectivity, product shape selectivity and transition state shape selectivity [4,5]. Zeolites such as ZSM-5 show the promising catalytic performance for the shape selectivity of reactants or products in the alkylation of aromatics and in the catalytic cracking of hydrocarbons [6]. The shape selectivity by zeolite catalysts... [Pg.585]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Shape-selective zeolites can also be used to discriminate among potential products of a chemical reaction, a property called product shape selectivity. In this case, the product produced is the one capable of escaping from the zeolite pore structure. This is the basis of the selective conversion of methanol to gasoline over... [Pg.171]

The alkylation of phenol investigated over H-MCM-22, H-ITQ-2 and H-MCM-36 showed that the delamelation and pillaring did not improve the catalytic activity and this was explained on the secondary processes taking place during the preparation of the corresponding materials, and which strongly affect the total acidity and the acidity on the external surface. Also, the composition of the reaction products is not influenced to a considerable extent by product shape selectivity effects. This seems to show that the tert-butylation reaction preferentially proceed at (or close to) the external surface of the zeolite layers. [Pg.359]

Conducting reactions in nanospace where the dimensions of the reaction vessel are comparable to those of the reactants provides a new tool that can be used to control the selectivity of chemical transformations.1 This dimensional aspect of nano-vessels has been referred to as shape selectivity.2 The effect of spatial confinement can potentially be exerted at all points on the reaction surface but its influence on three stationary points along the reaction coordinate (reactants, transition states, and products) deserve special attention.3,4 (1) Molecular sieving of the reactants, excluding substrates of the incorrect dimension from the reaction site can occur (reactant selectivity). (2) Enzyme-like size selection or shape stabilization of transition states can dramatically influence reaction pathways (transition state selectivity). (3) Finally, products can be selectively retained that are too large to be removed via the nano-vessel openings/pores (product selectivity). [Pg.225]

There are four widely accepted theories of shape selectivity reactant shape selectivity (RSS), product shape selectivity (PSS), transition state selectivity (TSS) (Figure 12.2), and concentration effect all of them are based on the hypothesis that the reactions occur within the zeolite micropores only. As indicated earlier, this hypothesis is often verified, the external surface area of the commonly used zeolites being much lower (one to two orders of magnitude) than their internal surface area. ... [Pg.236]

It is often difficult to distinguish restricted transition state shape selectivity from product shape selectivity due to the lack of clear experimental evidence that the pore geometry and local spatial environment are actually influencing the reaction rate [63]. The following test reactions are more likely be impacted by transition state selectivity effects. [Pg.435]

Meta-xylene isomerization to ortho- and para-xylene over 10- and 12-MR zeolites is another illustration of product shape selectivity effects [13]. The two products are essentially equally favorable from the standpoint of thermodynamics. With decreasing pore size, however, kinetics come into play and the selectivity to para-xylene increases, as illustrated in Figure 13.37 for results obtained at 317-318°C, 0.5 kPa meta-xylene pressure (in the presence of He carrier gas) and 10% conversion [64]. While the para ortho ratio is typically 1.0-1.5 with multi-dimensional... [Pg.445]

Other examples of systems that are likely to be governed by product shape selectivity effects include toluene disproportionation to para-xylene -i- benzene in favor of other xylenes r- benzene [61]. Toluene alkylation by methanol to give para-xylene in favor of other xylenes is yet another such example [76],... [Pg.446]

The catalysts are predominantly modified ZSM-5 zeolite. In general, the modifications are intended to restrict pore mouth size to promote the shape selective production of para-xylene within the microporous structure. The same modifications also serve to remove external acid sites and eliminate the consecutive isomerization of para-xylene. Methods used to modify the zeolite pore openings have included silation [50], incorporation of metal oxides such as MgO, ZnO and P2O5 [51, 52], steaming and the combination of steaming and chemical modification [53]. [Pg.515]

The catalytic isomerization of 1-methylnaphthalene and all lation of 2-methylnaphtha-lene with methanol were studied at ambient pressure in a flow-type fixed bed reactor. Acid zeolites with a Spaciousness Index between ca. 2 and 16 were found to be excellent isomerization catalysts which completely suppress the undesired disproportionation into nwhthalene and dimethylnaphthalenes due to transition state shape selectivity. Examples are HZSM-12, H-EU-1 and H-Beta. Optimum catalysts for the shape selective methylation of 2-methylnaphthalene are HZSM-5 and HZSM-li. All experimental finding concerning this reaction can be readily accounted for by conventional product shape selectivity combined with coke selectivation, so there is no need for invoking shape selectivity effects at the external surface or "nest effects", at variance with recent pubhcations from other groups. [Pg.291]

We interprete the above effects as conventional product shape selectivity inside the pore system of zeolite ZSM-5 or ZSM-11, and part of our arguments were presented earlier, in a preliminary note [28]. While the catalyst is on stream, coke is gradually formed and deposits, in part, inside the channel system. As a consequence, the diffusion pathways for product molecules increase. Slim molecules, such as 2,6-dimethylnaphthalene are less affected than... [Pg.298]

In most materials selection processes, it is virtually impossible to make materials choices independent of the product shape. This includes not only the macroscopic, or bulk, shape of the object such as hammer or pressure relief valve, but also the internal or microscopic shape, such as a honeycomb structure or a continuous-fiber-reinforced composite. Shape is so important because in order to achieve it, the material must be subjected to a specific processing step. In Chapter 7, we saw how even simple objects made from a single-phase metal alloy could be formed by multiple processes such as casting or forging, and how these processing steps can affect the ultimate properties of the material. As illustrated in Figure 8.6, function dictates the choice of... [Pg.820]

Product shape-selective catalysis only products less than a certain dimension can... [Pg.325]

One of the industrial processes using ZSM-5 provides us with an example of product shape-selective catalysis the production of l,4-( ara- xylene. Para-xylene is used in the manufacture of terephthalic acid, the starting material for the production of polyester fibres such as Terylene . [Pg.328]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]


See other pages where Product shape selectivity is mentioned: [Pg.79]    [Pg.565]    [Pg.79]    [Pg.565]    [Pg.79]    [Pg.565]    [Pg.79]    [Pg.565]    [Pg.403]    [Pg.416]    [Pg.436]    [Pg.438]    [Pg.438]    [Pg.439]    [Pg.440]    [Pg.442]    [Pg.443]    [Pg.444]    [Pg.446]    [Pg.446]    [Pg.446]    [Pg.447]    [Pg.467]    [Pg.470]    [Pg.362]    [Pg.285]    [Pg.300]    [Pg.328]    [Pg.284]    [Pg.235]    [Pg.1034]    [Pg.587]    [Pg.43]    [Pg.46]    [Pg.210]   
See also in sourсe #XX -- [ Pg.438 ]




SEARCH



Product selection

Product shape selectivity , zeolite

Product shape selectivity , zeolite catalysis

Shape product

Shape selection

Shape selectivity

Shaped products

© 2024 chempedia.info