Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical electrochemistry behavior

From the experimental results and theoretical approaches we learn that even the simplest interface investigated in electrochemistry is still a very complicated system. To describe the structure of this interface we have to tackle several difficulties. It is a many-component system. Between the components there are different kinds of interactions. Some of them have a long range while others are short ranged but very strong. In addition, if the solution side can be treated by using classical statistical mechanics the description of the metal side requires the use of quantum methods. The main feature of the experimental quantities, e.g., differential capacitance, is their nonlinear dependence on the polarization of the electrode. There are such sophisticated phenomena as ionic solvation and electrostriction invoked in the attempts of interpretation of this nonlinear behavior [2]. [Pg.801]

This book systematically summarizes the researches on electrochemistry of sulphide flotation in our group. The various electrochemical measurements, especially electrochemical corrosive method, electrochemical equilibrium calculations, surface analysis and semiconductor energy band theory, practically, molecular orbital theory, have been used in our studies and introduced in this book. The collectorless and collector-induced flotation behavior of sulphide minerals and the mechanism in various flotation systems have been discussed. The electrochemical corrosive mechanism, mechano-electrochemical behavior and the molecular orbital approach of flotation of sulphide minerals will provide much new information to the researchers in this area. The example of electrochemical flotation separation of sulphide ores listed in this book will demonstrate the good future of flotation electrochemistry of sulphide minerals in industrial applications. [Pg.19]

CNT randomly dispersed composites Many soft and rigid composites of carbon nanotubes have been reported [17]. The first carbon-nanotube-modified electrode was made from a carbon-nanotube paste using bromoform as an organic binder (though other binders are currently used for the paste formation, i.e. mineral oil) [105]. In this first application, the electrochemistry of dopamine was proved and a reversible behavior was found to occur at low potentials with rates of electron transfer much faster than those observed for graphite electrodes. Carbon-nanotube paste electrodes share the advantages of the classical carbon paste electrode (CPE) such as the feasibility to incorporate different substances, low background current, chemical inertness and an easy renewal nature [106,107]. The added value with CNTs comes from the enhancement of the electron-transfer reactions due to the already discussed mechanisms. [Pg.138]

The current chapter focuses on the electrochemistry of the ionic forms of copper in solution, starting with the potentials of various copper species. This includes the effect of coordination geometry, donor atoms, and solvent upon the electrochemical potentials of copper redox couples, specifically Cu(II/I). This is followed by a discussion of the various types of coupled chemical reactions that may contribute to the observed Cu(II/I) electrochemical behavior and the characteristics that may be used to distinguish the presence of each of these mechanisms. The chapter concludes with brief discussions of the electrochemical properties of copper proteins, unidentate and binuclear complexes. [Pg.993]

There is, of course, a limit on the amount of solution resistance that can be overcome even with microelectrodes. Attempts have been made to perform electrochemistry in the gas phase [79] or in supercritical C02 180] with microelectrodes. In each case, however, the conduction path was shown to be not through the bulk phase, but rather across the insulating surface between the microelectrode and the counter electrode. This mechanism enables electrochemical detection in highly unusual media for voltammetry and illustrates that only very small conduction pathways are required to obtain well-defined electrochemical behavior. [Pg.396]

One may expect that future work on the electrochemistry of diamond should take two paths, namely, an extensive investigation (search for new processes and applications of the carbon allotropes in the electrochemical science and engineering) and intensive one (elucidation of the reaction mechanisms, revealing the effects of crystal structure and semiconductor properties on the electrochemical behavior of diamond and related materials). It is expected that better insight into these effects will result in the development of standard procedures for thin-film-electrodes growth, their characterization, and surface preparation. [Pg.263]

Finite-space diffusion takes place during the charging of insertion electrodes at moderate frequencies, transforming into mainly capacitive behavior within the limit of very low frequencies, in contrast to the semi-infinite diffusion for solution redox-species (except for thin-layer solution electrochemistry) electrochemical impedance spectroscopy becomes a very useful diagnostic tool for the characterization of insertion mechanisms ... [Pg.355]

The complexity of the system implies that many phenomena are not directly explainable by the basic theories of semiconductor electrochemistry. The basic theories are developed for idealized situations, but the electrode behavior of a specific system is almost always deviated from the idealized situations in many different ways. Also, the complex details of each phenomenon are associated with all the processes at the silicon/electrolyte interface from a macro scale to the atomic scale such that the rich details are lost when simplifications are made in developing theories. Additionally, most theories are developed based on the data that are from a limited domain in the multidimensional space of numerous variables. As a result, in general such theories are valid only within this domain of the variable space but are inconsistent with the data outside this domain. In fact, the specific theories developed by different research groups on the various phenomena of silicon electrodes are often inconsistent with each other. In this respect, this book had the opportunity to have the space and scope to assemble the data and to review the discrete theories in a global perspective. In a number of cases, this exercise resulted in more complete physical schemes for the mechanisms of the electrode phenomena, such as current oscillation, growth of anodic oxide, anisotropic etching, and formation of porous silicon. [Pg.442]

Although this book significantly differs from the earlier Colloid Chemistry textbook, it nevertheless focuses on the specifics of educational and research work carried out at the Colloid Chemistry Division at the Chemistry Department of MSU. Many results presented in this book represent the art developed in the laboratories of the Colloid Chemistry Division, in the Laboratory of Physical-Chemical Mechanics (headed by E.D. Shchukin since 1967) of the Institute of Physical Chemistry of the Russian Academy of Science, and in other research institutions and industrial laboratories under the guidance of the authors and with their direct participation. Special attention is devoted in the book to the broad capabilities that the use of surfactants offers for controlling the properties and behavior of disperse systems and various materials due to the specific physico-chemical interactions taking place at interfaces. At the same time the authors made every effort to avoid duplication of material traditionally covered in textbooks on physical chemistry, electrochemistry, polymer chemistry, etc. These include adsorption from the gas phase on solid surfaces (by microporous adsorbents), the structure of the dense part of the electrical double layer, electrocapillary phenomena, specific properties of polymer colloids, and some other areas. [Pg.757]

The relationship between the electrochemistry of tocopherols and toco-pherylquinones and their biological redox reactions is not as obvious as with the other systems discussed in this chapter. However, the electrochemistry serves to show the complexity of their redox behavior and to point out some important points in the redox mechanisms of quinones. [Pg.160]

Many of the other products of uric acid noted above are toxic and are not considered to be normal metabolites in the human. However, the possibility certainly exists that conditions associated with peroxidatic oxidation of uric acid such as large accumulations of leucocytes (localized abscesses, leucocytic exudates, leukemia, etc.) could give rise to toxic substances. Thus, there is a real need to understand the basic mechanism of enzymic oxidations of uric acid. Our understanding of this mechanism has been drawn from chemical, enzymic, and electrochemical studies. Because this review is primarily concerned with the electrochemistry of biomolecules, the electrochemical behavior of uric acid will be discussed first. [Pg.172]

This chapter outlines the basic aspects of interfacial electrochemical polarization and their relevance to corrosion. A discussion of the theoretical aspects of electrode kinetics lays a foundation for the understanding of the electrochemical nature of corrosion. Topics include mixed potential theory, reversible electrode potential, exchange current density, corrosion potential, corrosion current, and Tafel slopes. The theoretical treatment of electrochemistry in this chapter is focused on electrode kinetics, polarization behavior, mass transfer effects, and their relevance to corrosion. Analysis and solved corrosion problems are designed to understand the mechanisms of corrosion processes, learn how to control corrosion rates, and evaluate the protection strategies at the metal-solution interface [1-7]. [Pg.94]

S.6.4.7.2 Corrosion Inhibitors The corrosion process and the mechanism of inhibitors is an important research direction for electrochemistry. Raman spectroscopy is advantageous in the investigation of adsorption-mediated corrosion inhibition, because it is readily applicable to the in situ observation of the behavior of inhibitors... [Pg.649]


See other pages where Mechanical electrochemistry behavior is mentioned: [Pg.202]    [Pg.202]    [Pg.520]    [Pg.561]    [Pg.574]    [Pg.244]    [Pg.312]    [Pg.1064]    [Pg.220]    [Pg.287]    [Pg.66]    [Pg.312]    [Pg.119]    [Pg.143]    [Pg.66]    [Pg.522]    [Pg.523]    [Pg.26]    [Pg.138]    [Pg.73]    [Pg.1064]    [Pg.207]    [Pg.343]    [Pg.367]    [Pg.7]    [Pg.386]    [Pg.237]    [Pg.538]    [Pg.551]    [Pg.538]    [Pg.551]    [Pg.572]    [Pg.271]    [Pg.885]    [Pg.124]    [Pg.3]   
See also in sourсe #XX -- [ Pg.202 , Pg.203 ]




SEARCH



Mechanical behavior

© 2024 chempedia.info