Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry solutions

Electrochemistry Solution (aqueous or non-aqueous) Metal-centred and ligand redox... [Pg.215]

S6 Chapter 14 The Balance Equations for Chemical Reactors and Electrochemistry Solution... [Pg.786]

Anodic Dissolution of Binary Alloys Studied by Electrochemistry, Solution, and Surface Analysis Techniques... [Pg.153]

Electrochemistry is concerned with the study of the interface between an electronic and an ionic conductor and, traditionally, has concentrated on (i) the nature of the ionic conductor, which is usually an aqueous or (more rarely) a non-aqueous solution, polymer or superionic solid containing mobile ions (ii) the structure of the electrified interface that fonns on inunersion of an electronic conductor into an ionic conductor and (iii) the electron-transfer processes that can take place at this interface and the limitations on the rates of such processes. [Pg.559]

The combination of electrochemistry and photochemistry is a fonn of dual-activation process. Evidence for a photochemical effect in addition to an electrochemical one is nonnally seen m the fonn of photocurrent, which is extra current that flows in the presence of light [, 89 and 90]. In photoelectrochemistry, light is absorbed into the electrode (typically a semiconductor) and this can induce changes in the electrode s conduction properties, thus altering its electrochemical activity. Alternatively, the light is absorbed in solution by electroactive molecules or their reduced/oxidized products inducing photochemical reactions or modifications of the electrode reaction. In the latter case electrochemical cells (RDE or chaimel-flow cells) are constmcted to allow irradiation of the electrode area with UV/VIS light to excite species involved in electrochemical processes and thus promote fiirther reactions. [Pg.1945]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

Combination silver—silver salt electrodes have been used in electrochemistry. The potential of the common Ag/AgCl (saturated)—KCl (saturated) reference electrode is +0.199 V. Silver phosphate is suitable for the preparation of a reference electrode for the measurement of aqueous phosphate solutions (54). The silver—silver sulfate—sodium sulfate reference electrode has also been described (55). [Pg.92]

The solution to reference electrode instabiUty is the introduction of a third or auxiUary electrode. This particular electrode is intended to carry whatever current is required to keep the potential difference between the working and reference electrodes at a specified value, and virtually all potentiostats (instmments designed specifically for electrochemistry) have this three-electrode configuration. Its use is illustrated in Figure 3. [Pg.51]

The processes of cathodic protection can be scientifically explained far more concisely than many other protective systems. Corrosion of metals in aqueous solutions or in the soil is principally an electrolytic process controlled by an electric tension, i.e., the potential of a metal in an electrolytic solution. According to the laws of electrochemistry, the reaction tendency and the rate of reaction will decrease with reducing potential. Although these relationships have been known for more than a century and although cathodic protection has been practiced in isolated cases for a long time, it required an extended period for its technical application on a wider scale. This may have been because cathodic protection used to appear curious and strange, and the electrical engineering requirements hindered its practical application. The practice of cathodic protection is indeed more complex than its theoretical base. [Pg.582]

From the experimental results and theoretical approaches we learn that even the simplest interface investigated in electrochemistry is still a very complicated system. To describe the structure of this interface we have to tackle several difficulties. It is a many-component system. Between the components there are different kinds of interactions. Some of them have a long range while others are short ranged but very strong. In addition, if the solution side can be treated by using classical statistical mechanics the description of the metal side requires the use of quantum methods. The main feature of the experimental quantities, e.g., differential capacitance, is their nonlinear dependence on the polarization of the electrode. There are such sophisticated phenomena as ionic solvation and electrostriction invoked in the attempts of interpretation of this nonlinear behavior [2]. [Pg.801]

The theory of rate measurements by electrochemistry is mathematically quite difficult, although the experimental measurements are straightforward. The techniques are widely applicable, because conditions can be found for which most compounds are electroactive. However, many questionable kinetic results have been reported, and some of these may be a consequence of unsuitable approximations in applying theory. Another consideration is that these methods are mainly applicable to aqueous solutions at high ionic strengths and that the reactions being observed are not bulk phase reactions but are taking place in a layer of molecular dimensions near the electrode surface. Despite such limitations, useful kinetic results have been obtained. [Pg.183]

Freiman, L. 1. and Kolotyrkin, Ya. M., Pitting Corrosion of Aluminium in Solutions of Sodium Perchlorate and Perchloric Acid , Zashch. Melal, 2, 488 (1966) C.A., 65, 19674d Novakovskii, V. M. and Sorokina, A. N., Comparative Electrochemistry of Stress Corrosion and Pitting of Stainless Steels in Chloride Solutions , Zashch. Melal, 2, 416 (1966) C.A., 65, 18152g... [Pg.210]

However, when the second stage in the hydrogen evolution reaction is electrochemical desorption, the rate of this reaction is increased as the potential falls, and the adsorbed hydrogen concentration may remain constant or fall, according to the detailed electrochemistry. This results in curves such as that shown in Fig. 8.38 for steel in sodium chloride solution. [Pg.1231]

The application of this method of corrosion monitoring demands some knowledge of the electrochemistry of the material of construction in the corrodent. Further, it is only applicable in electrolyte solutions. [Pg.32]

The present Section, which provides an outline of selected relevant topics in electrochemistry, is intended primarily as an introduction to aqueous corrosion for those readers whose basic training has not involved a study of electrochemistry. The scope of electrochemistry is enormous and cannot be treated adequately here, but there are now a number of excellent books on the subject, and it is hoped that this outline will serve to stimulate further study. The topics selected are as follows a) the nature of the electrified interface between the metal and the solution, (b) adsorption, (c) transfer of charge across the interface under equilibrium and non-equilibrium conditions, d) overpotential and the rate of an electrode reaction and (e) the hydrogen evolution reaction and hydrogen absorption by ferrous alloys. For reasons of space a number of important topics, such as the electrochemistry of electrolyte solutions, have been omitted. [Pg.1165]

In electrochemistry it is customary to multiply each of those quantities by Avogadro s constant and, when a few additional ions enter the already saturated solution, to speak of the entropy of solution per mole. Let the entropy of one mole of the crystalline solid be denoted by Scr and let Si and S2 denote, respectively, the entropy of the solution before, and after, the entry of the additional solute, both expressed in calories per mole. The total initial entropy is obviously (S + Si) and the final entropy is St. The difference between the final and the initial entropy is by definition AS,at. [Pg.95]

The left-hand side of (165) or (166) gives the unitary part of the entropy of solution. In electrochemistry, however, it is the left-hand side of (167) which is the conventional entropy of solution at infinite dilution usually denoted by A[Pg.179]

The study of ions in gases is a part of physics, while the study of ions involution is classed as chemistry. Although this division seems somewhat arbitrary, the experimental investigation of ionic solutions is carried on almost entirely by electrochemists. The present book is therefore primarily addressed to students of electrochemistry and research workers in this field. To make the book as useful as possible for teaching purposes, problems have been inserted at the ends of many of the chapters. The author hopes that the work will be found suitable for graduate courses and seminars, as well as for individual study. [Pg.280]

The concentration of the solution within the glass bulb is fixed, and hence on the inner side of the bulb an equilibrium condition leading to a constant potential is established. On the outside of the bulb, the potential developed will be dependent upon the hydrogen ion concentration of the solution in which the bulb is immersed. Within the layer of dry glass which exists between the inner and outer hydrated layers, the conductivity is due to the interstitial migration of sodium ions within the silicate lattice. For a detailed account of the theory of the glass electrode a textbook of electrochemistry should be consulted. [Pg.557]

The test of the validity of the theory of Arrhenius is not therefore to be found in the agreement between the values of i obtained from measurements of any properties of solutions which are conditioned by the osmotic pressure it is in quite another field—that of electrochemistry—that a comparison of known relations with the deductions from the theory may be instituted. [Pg.301]

The electrical double layer is the array of charged particles and/or oriented dipoles that exists at every material interface. In electrochemistry, such a layer reflects the ionic zones formed in the solution to compensate for the excess of charge on the electrode (qe). A positively charged electrode thus attracts a layer of negative ions (and vice versa). Since the interface must be neutral. qe + qs = 0 (where qs is the charge of the ions in the nearby solution). Accordingly, such a counterlayer is made... [Pg.18]


See other pages where Electrochemistry solutions is mentioned: [Pg.788]    [Pg.65]    [Pg.150]    [Pg.788]    [Pg.65]    [Pg.150]    [Pg.149]    [Pg.314]    [Pg.315]    [Pg.564]    [Pg.1948]    [Pg.35]    [Pg.52]    [Pg.27]    [Pg.448]    [Pg.101]    [Pg.144]    [Pg.294]    [Pg.841]    [Pg.1161]    [Pg.1302]    [Pg.1165]    [Pg.1234]    [Pg.1234]    [Pg.41]    [Pg.92]    [Pg.218]    [Pg.233]    [Pg.14]    [Pg.125]    [Pg.202]   
See also in sourсe #XX -- [ Pg.735 , Pg.736 ]




SEARCH



© 2024 chempedia.info