Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium natural

Segal DS, Callaghan M, MandeU AJ Alterations in behaviour and catecholamine biosynthesis induced by lithium. Nature 254 58-59, 1975 Seguela P, Wadiche J, Dineley-Miller K, et al Molecular cloning, functional properties, and distribution of rat brain dJ a nicotinic cation channel highly permeable to calcium. J Neurosci 13 596-604, 1993... [Pg.742]

Kao, K.R., Masiu, R.R, and Elinson, R., 1986, Respecification of pattern in Xenopus laevis embryos - a novel effect of lithium. Nature 322 371-373. [Pg.66]

When determining an NDP profile, it should be remembered that only the isotopic concentration is actually determined and that the elemental profile is inferred. While natural isotopic abundances are usually present, anthropogenic activities can severely distort isotopic ratios, especially for boron and lithium. Natural processes can also perturb isotopic proportion, however this is both rare and small in magnitude. Materials prepared by ion implantation will be isotopically different from natural materials. "B is more abundant (80.1%) and consequently more economical to implant than B. As a result, boron-implanted samples must be especially prepared for NDP analysis. Li is less abundant in nature and historically has been separated from natural lithium for nuclear applications. This provided a relatively inexpensive source of Li-depleted, i.e., purified, lithium available for chemical applications. [Pg.1611]

Gallager, D. W., Pert, A., and Bunney, W. E., Jr., 1978, Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium, Nature (London) 273 309-312. [Pg.401]

This book will review the geology, mining, processing, uses, industry statistics, phase data and physical properties of these two important industrial minerals. Lithium and calcium chloride are not related, other than having a few common brine sources and uses, and are presented together merely for convenience. Neither material has a sufficiently extensive literature base to justrfy being the subject of a separate book, so the two subjects have been combined in this volume as separate chapters. The manner of presentation will be the same for both minerals. This book will be the last in a sequence of books on saline minerals by the author Natural Soda Ash, Potash, Borates, Sodium Sulfate, and now Lithium/Natural Calcium Chloride. [Pg.479]

Gr. aktis, aktinos, beam or ray). Discovered by Andre Debierne in 1899 and independently by F. Giesel in 1902. Occurs naturally in association with uranium minerals. Actinium-227, a decay product of uranium-235, is a beta emitter with a 21.6-year half-life. Its principal decay products are thorium-227 (18.5-day half-life), radium-223 (11.4-day half-life), and a number of short-lived products including radon, bismuth, polonium, and lead isotopes. In equilibrium with its decay products, it is a powerful source of alpha rays. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300-degrees G. The chemical behavior of actinium is similar to that of the rare earths, particularly lanthanum. Purified actinium comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.6-year half-life. It is about 150 times as active as radium, making it of value in the production of neutrons. [Pg.157]

The stability of the various cumulenic anions depends to a large extent upon the nature of the groups linked to the cumulenic system. Whereas solutions of lithiated allenic ethers and sulfides in diethyl ether or THF can be kept for a limited period at about O C, the lithiated hydrocarbons LiCH=C=CH-R are transformed into the isomeric lithium acetylides at temperatures above about -20 C, probably via HC C-C(Li )R R Lithiated 1,2,4-trienes, LiCH=C=C-C=C-, are... [Pg.9]

Finally the chemical aromatization of Ring A which occurs in nature in the biosynthesis of estrogens must be mentioned. It can be done by thermal cleavage of the C-19 methyl group in 1,4-dien-3-ones (H.H. Inhoffen, 1940 C. Djerassi, 1950) and was later achieved at lower temperatures with lithium — biphenyl in THF (H.L. Dryden, Jr., 1964). [Pg.287]

For organometailic compounds, the situation becomes even more complicated because the presence of elements such as platinum, iron, and copper introduces more complex isotopic patterns. In a very general sense, for inorganic chemistry, as atomic number increases, the number of isotopes occurring naturally for any one element can increase considerably. An element of small atomic number, lithium, has only two natural isotopes, but tin has ten, xenon has nine, and mercury has seven isotopes. This general phenomenon should be approached with caution because, for example, yttrium of atomic mass 89 is monoisotopic, and iridium has just two natural isotopes at masses 191 and 193. Nevertheless, the occurrence and variation in patterns of multi-isotopic elements often make their mass spectrometric identification easy, as depicted for the cases of dimethylmercury and dimethylplatinum in Figure 47.4. [Pg.349]

Due to the strong ionic nature of lithium trifluoromethanesulfonate, it can increase the conductivity of coating formulations, and thereby enhance the dissipation of static electricity in nonconducting substrates (see Antistatic agents) (25). [Pg.315]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

From the time that isoprene was isolated from the pyrolysis products of natural mbber (1), scientific researchers have been attempting to reverse the process. In 1879, Bouchardat prepared a synthetic mbbery product by treating isoprene with hydrochloric acid (2). It was not until 1954—1955 that methods were found to prepare a high i i -polyisoprene which dupHcates the stmcture of natural mbber. In one method (3,4) a Ziegler-type catalyst of tri alkyl aluminum and titanium tetrachloride was used to polymerize isoprene in an air-free, moisture-free hydrocarbon solvent to an all i7j -l,4-polyisoprene. A polyisoprene with 90% 1,4-units was synthesized with lithium catalysts as early as 1949 (5). [Pg.462]

Brine Sources. Lithium occurs naturally in brines from salars, saline lakes and seawater, od-fteld waters, and geothermal brines. Of these sources, lithium is produced only from brines of two salars. [Pg.221]

Recovery from Brines. Natural lithium brines are predominately chloride brines varying widely in composition. The economical recovery of lithium from such sources depends not only on the lithium content but on the concentration of interfering ions, especially calcium and magnesium. If the magnesium content is low, its removal by lime precipitation is feasible. Location and avadabiHty of solar evaporation (qv) are also important factors. [Pg.222]

Dinitrogen has a dissociation energy of 941 kj/mol (225 kcal/mol) and an ionisation potential of 15.6 eV. Both values indicate that it is difficult to either cleave or oxidize N2. For reduction, electrons must be added to the lowest unoccupied molecular orbital of N2 at —7 eV. This occurs only in the presence of highly electropositive metals such as lithium. However, lithium also reacts with water. Thus, such highly energetic interactions ate unlikely to occur in the aqueous environment of the natural enzymic system. Even so, highly reducing systems have achieved some success in N2 reduction even in aqueous solvents. [Pg.91]

Over the years, a variety of fuel types were employed. Originally, natural uranium slugs canned in aluminum were the source of plutonium, while lithium—aluminum alloy target rods provided control and a source of tritium. Later, to permit increased production of tritium, reactivity was recovered by the use of enriched uranium fuel, ranging from 5—93%. [Pg.219]

Deuterium is abundant in and easily separated from water. There is enough deuterium on earth to provide power for geological time scales. In contrast, tritium is not available in nature, but can be produced from n+ lithium reactions (see Lithium and lithium compounds). Natural Hthium is exhaustible, but sufficient tritium can be provided from it until fusion energy production is efficient enough to involve only D-D reactions ... [Pg.116]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Electronic and Electrical Applications. Sulfolane has been tested quite extensively as the solvent in batteries (qv), particularly for lithium batteries. This is because of its high dielectric constant, low volatUity, exceUent solubilizing characteristics, and aprotic nature. These batteries usuaUy consist of anode, cathode polymeric material, aprotic solvent (sulfolane), and ionizable salt (145—156). Sulfolane has also been patented for use in a wide variety of other electronic and electrical appHcations, eg, as a coil-insulating component, solvent in electronic display devices, as capacitor impregnants, and as a solvent in electroplating baths (157—161). [Pg.70]

Lithium—Thionyl Chloride Cells. Lidiium—thionyi chloride cells have very high energy density. One of the main reasons is the nature of the ceU reaction. [Pg.537]


See other pages where Lithium natural is mentioned: [Pg.4]    [Pg.640]    [Pg.73]    [Pg.4]    [Pg.640]    [Pg.73]    [Pg.14]    [Pg.227]    [Pg.271]    [Pg.17]    [Pg.30]    [Pg.203]    [Pg.299]    [Pg.318]    [Pg.362]    [Pg.150]    [Pg.150]    [Pg.362]    [Pg.252]    [Pg.437]    [Pg.220]    [Pg.220]    [Pg.222]    [Pg.223]    [Pg.26]    [Pg.244]    [Pg.116]    [Pg.270]    [Pg.157]    [Pg.475]    [Pg.534]    [Pg.582]    [Pg.356]    [Pg.375]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Lithium natural, deposit

Natural waters, lithium

Nature and geological origin of all potential lithium resources

© 2024 chempedia.info