Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium functions

Several o/Zto-subslituted phenyl methyl telluriums were prepared from dimethyl ditellurium and the appropriate aryl lithium compounds, in which the or/Ao-substituent is compatible with the lithium functionality. [Pg.420]

Lithium is used as a mood stabilizing drug. The Li ion interacts with many nerve centers throughout the body and within the brain. Li has a high-charge density and gives up its electrons readily so it can interact with a variety of biomolecules. Scientists aren t certain how lithium functions to stabilize mood, but it s been used since the 19th century nonetheless. [Pg.277]

Keywords. Anionic polymerization. Living anionic polymerization, 1,1-Diphenylalkyl-lithiums. Functionalized polymers. Block copolymers. Macromonomers, Star-branched polymers. Dilithium initiators. Trilithium initiators. Multifunctional initiators. Living linking reactions. Heteroarm star polymers, Miktoarm star polymers... [Pg.67]

Lithium functions as the anode in the battery s chemical system. When considering using lithium batteries, it is crucial to take a look at the material used for the cathode. There are a number of cathode and depolarizer materials used in conjunction with the lithium metal anode to make up the generic term lithium batteries. These materials, which include manganese dioxide, sulphur dioxide, carbon fluoride, thionyl chloride and lead iodide, greatly influence the properties and characteristics of lithium batteries (Table 38.2). [Pg.412]

The representation of trial fiinctions as linear combinations of fixed basis fiinctions is perhaps the most connnon approach used in variational calculations optimization of the coefficients is often said to be an application of tire linear variational principle. Altliough some very accurate work on small atoms (notably helium and lithium) has been based on complicated trial functions with several nonlinear parameters, attempts to extend tliese calculations to larger atoms and molecules quickly runs into fonnidable difficulties (not the least of which is how to choose the fomi of the trial fiinction). Basis set expansions like that given by equation (A1.1.113) are much simpler to design, and the procedures required to obtain the coefficients that minimize are all easily carried out by computers. [Pg.38]

Lithium aluminium hydride LiAlH is a useful and conveuient reagent for the selective reduction of the carbonyl group and of various other polar functional groups. It is obtained by treatment of finely powdered lithium hydride with an ethereal solution of anhydrous aluminium chloride ... [Pg.877]

Some of the functional groups which are reduced by lithium aluminium hydride, the reduction product together with the theoretical mols of reducing agent required (in parenthesis) are listed below —... [Pg.878]

As formulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations yield orbitals that do not guarantee that P possesses proper spin symmetry. To illustrate the point, consider the form of the equations for an open-shell system such as the Lithium atom Li. If Isa, IsP, and 2sa spin-orbitals are chosen to appear in the trial function P, then the Fock operator will contain the following terms ... [Pg.462]

The less hindered f/ans-olefins may be obtained by reduction with lithium or sodium metal in liquid ammonia or amine solvents (Birch reduction). This reagent, however, attacks most polar functional groups (except for carboxylic acids R.E.A. Dear, 1963 J. Fried, 1968), and their protection is necessary (see section 2.6). [Pg.100]

The most frequently encountered nucleophiles in functional group transformations are anions which are used as their lithium sodium or potassium salts If we use M to represent lithium sodium or potassium some representative nucleophilic reagents are... [Pg.327]

Table 8 1 illustrates an application of each of these to a functional group transfer matron The anionic portion of the salt substitutes for the halogen of an alkyl halide The metal cation portion becomes a lithium sodium or potassium halide... [Pg.327]

Sodium borohydride and lithium aluminum hydride react with carbonyl compounds in much the same way that Grignard reagents do except that they function as hydride donors rather than as carbanion sources Figure 15 2 outlines the general mechanism for the sodium borohydride reduction of an aldehyde or ketone (R2C=0) Two points are especially important about this process... [Pg.629]

In contrast to alcohols with their nch chemical reactivity ethers (compounds contain mg a C—O—C unit) undergo relatively few chemical reactions As you saw when we discussed Grignard reagents m Chapter 14 and lithium aluminum hydride reduc tions m Chapter 15 this lack of reactivity of ethers makes them valuable as solvents m a number of synthetically important transformations In the present chapter you will learn of the conditions m which an ether linkage acts as a functional group as well as the methods by which ethers are prepared... [Pg.665]

The carbonyl group of carbohydrates can be reduced to an alcohol function Typi cal procedures include catalytic hydrogenation and sodium borohydnde reduction Lithium aluminum hydride is not suitable because it is not compatible with the solvents (water alcohols) that are required to dissolve carbohydrates The products of carbohydrate reduc tion are called alditols Because these alditols lack a carbonyl group they are of course incapable of forming cyclic hemiacetals and exist exclusively m noncyclic forms... [Pg.1052]

Other Organolithium Compounds. Organoddithium compounds have utiHty in anionic polymerization of butadiene and styrene. The lithium chain ends can then be converted to useflil functional groups, eg, carboxyl, hydroxyl, etc (139). Lewis bases are requHed for solubdity in hydrocarbon solvents. [Pg.229]

Fig. 11. Modulus inciease as a function of fibei volume fraction alumina fiber-reinforced aluminum—lithium alloy matrix for (a) E (elastic modulus),... Fig. 11. Modulus inciease as a function of fibei volume fraction alumina fiber-reinforced aluminum—lithium alloy matrix for (a) E (elastic modulus),...
The reactor coolant pH is controlled using lithium-7 hydroxide [72255-97-17, LiOH. Reactor coolant pH at 300°C, as a function of boric acid and lithium hydroxide concentrations, is shown in Figure 3 (4). A pure boric acid solution is only slightly more acidic than pure water, 5.6 at 300°C, because of the relatively low ionisation of boric acid at operating primary temperatures (see Boron COMPOUNDS). Thus the presence of lithium hydroxide, which has a much higher ionisation, increases the pH ca 1—2 units above that of pure water at operating temperatures. This leads to a reduction in corrosion rates of system materials (see Hydrogen-ION activity). [Pg.191]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

Selenium and selenium compounds are also used in electroless nickel-plating baths, delayed-action blasting caps, lithium batteries, xeroradiography, cyanine- and noncyanine-type dyes, thin-film field effect transistors (FET), thin-film lasers, and fire-resistant functional fluids in aeronautics (see... [Pg.338]

Lithium hydride is perhaps the most usehil of the other metal hydrides. The principal limitation is poor solubiUty, which essentially limits reaction media to such solvents as dioxane and dibutyl ether. Sodium hydride, which is too insoluble to function efficiently in solvents, is an effective reducing agent for the production of silane when dissolved in a LiCl—KCl eutectic at 348°C (63—65). Magnesium hydride has also been shown to be effective in the reduction of chloro- and fluorosilanes in solvent systems (66) and eutectic melts (67). [Pg.23]

The versatility of lithium aluminum hydride permits synthesis of alkyl, alkenyl, and arylsilanes. Silanes containing functional groups, such as chloro, amino, and alkoxyl in the organic substituents, can also be prepared. Mixed compounds containing both SiCl and SiH cannot be prepared from organopolyhalosilanes using lithium aluminum hydride. Reduction is invariably complete. [Pg.29]

The most important rechargeable lithium batteries are those using a soHd positive electrode within which the lithium ion is capable of intercalating. These intercalation, or insertion, electrodes function by allowing the interstitial introduction of the LE ion into a host lattice (16,17). The general reaction can be represented by the equation ... [Pg.582]

Other large monocarbaboranes include /<7( -6-(NR3)-6-CB2H [f/oj o-l-CB H J [38192-43-7] and closo-C ]H. ][ [39102-46-0]. The closo monocarbaboranes can be functionalized at carbon via lithiation using reagents such as -butyl lithium in a manner similar to the dicarbaboranes. The small monocarbaboranes /oj o-l-CB H [25301-90-0], nido-2-C [12385-35-2], and a variety of their alkylated derivatives are also known (127,128). [Pg.241]


See other pages where Lithium functions is mentioned: [Pg.221]    [Pg.340]    [Pg.567]    [Pg.425]    [Pg.156]    [Pg.221]    [Pg.340]    [Pg.567]    [Pg.425]    [Pg.156]    [Pg.30]    [Pg.308]    [Pg.112]    [Pg.131]    [Pg.327]    [Pg.328]    [Pg.249]    [Pg.305]    [Pg.240]    [Pg.199]    [Pg.469]    [Pg.157]    [Pg.233]    [Pg.492]    [Pg.438]    [Pg.443]    [Pg.68]    [Pg.69]    [Pg.535]    [Pg.545]    [Pg.582]    [Pg.220]    [Pg.532]   
See also in sourсe #XX -- [ Pg.313 , Pg.366 , Pg.380 , Pg.402 , Pg.442 , Pg.691 ]




SEARCH



© 2024 chempedia.info