Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Variation principle linear

The representation of trial fiinctions as linear combinations of fixed basis fiinctions is perhaps the most connnon approach used in variational calculations optimization of the coefficients is often said to be an application of tire linear variational principle. Altliough some very accurate work on small atoms (notably helium and lithium) has been based on complicated trial functions with several nonlinear parameters, attempts to extend tliese calculations to larger atoms and molecules quickly runs into fonnidable difficulties (not the least of which is how to choose the fomi of the trial fiinction). Basis set expansions like that given by equation (A1.1.113) are much simpler to design, and the procedures required to obtain the coefficients that minimize are all easily carried out by computers. [Pg.38]

It is not possible to solve this equation analytically, and two different calculations based on the linear variational principle are used here to obtain the approximate energy levels for this system. In the first,... [Pg.42]

This is perhaps the easiest method to understand. It is based on the variational principle (Appendix B), analogous to the HF method. The trial wave function is written as a linear combination of determinants with the expansion coefficients determined by requiring that the energy should be a minimum (or at least stationary), a procedure known as Configuration Interaction (Cl). The MOs used for building the excited Slater determinants are taken from a Hartree-Fock calculation and held fixed. Subscripts S, D, T etc. indicate determinants which are singly, doubly, triply etc. excited relative to the... [Pg.101]

Consider now making the variational coefficients in front of the inner basis functions constant, i.e. they are no longer parameters to be determined by the variational principle. The Is-orbital is thus described by a fixed linear combination of say six basis functions. Similarly the remaining four basis functions may be contracted into only two functions, for example by fixing the coefficient in front of the inner three functions. In doing this the number of basis functions to be handled by the variational procedure has been reduced from 10 to three. [Pg.157]

The coefficients CK for a solution to the Schrodinger equation (Eq. II. 1) may now be determined by the variation principle (Eq. II.7) which leads to an infinite system of linear equations... [Pg.261]

It can be shown that the linear term (1) vanishes if the variational principle is satisfied for the original orbitals so that... [Pg.25]

The concept of dipole hardness permit to explore the relation between polarizability and reactivity from first principles. The physical idea is that an atom is more reactive if it is less stable relative to a perturbation (here the external electric field). The atomic stability is measured by the amount of energy we need to induce a dipole. For very small dipoles, this energy is quadratic (first term in Equation 24.19). There is no linear term in Equation 24.19 because the energy is minimum relative to the dipole in the ground state (variational principle). The curvature hi of E(p) is a first measure of the stability and is equal exactly to the inverse of the polarizability. Within the quadratic approximation of E(p), one deduces that a low polarizable atom is expected to be more stable or less reactive as it does in practice. But if the dipole is larger, it might be useful to consider the next perturbation order ... [Pg.339]

Processes, Variational Principles in (Ono). Thermodynamics of Irreversible Processes, Non-linear 3 267... [Pg.406]

The exact approach to the problem of dynamic (linear) stability is based on the solution of the equations for small perturbations, and finding eigenvalues and eigenfunctions of these equations. In a conservative system a variational principle may be derived, which determines the exact value of eigenfrequency... [Pg.9]

Models of hot isentropic neutron stars have been calculated by Bisnovatyi-Kogan (1968), where equilibrium between iron, protons and neutrons was calculated, and the ratio of protons and neutrons was taken in the approximation of zero chemical potential of neutrino. The stability was checked using a variational principle in full GR (Chandrasekhar, 1964) with a linear trial function. The results of calculations, showing the stability region of hot neutron stars are given in Fig. 7. Such stars may be called neutron only by convention, because they consist mainly of nucleons with almost equal number of neutrons and protons. The maximum of the mass is about 70M , but from comparison of the total energies of hot neutron stars with presupemova cores we may conclude, that only collapsing cores with masses less that 15 M have... [Pg.16]

The first kind of simplification exclusively concerns the size of the basis set used in the linear combination of one center orbitals. Variational principle is still fulfilled by this type of "ab initio SCF calculation, but the number of functions applied is not as large as necessary to come close to the H. F. limit of the total energy. Most calculations of medium-sized structures consisting for example of some hydrogens and a few second row atoms, are characterized by this deficiency. Although these calculations belong to the class of "ab initio" investigations of molecular structure, basis set effects were shown to be important 54> and unfortunately the number of artificial results due to a limited basis is not too small. [Pg.16]

In an important paper (TNC.l), they offered for the first time an extension of nonequilibrium thermodynamics to nonlinear transport laws. As could be expected, the situation was by no means as simple as in the linear domain. The authors were hoping to find a variational principle generalizing the principle of minimum entropy production. It soon became obvious that such a principle cannot exist in the nonlinear domain. They succeeded, however, to derive a half-principle They decomposed the differential of the entropy production (1) as follows ... [Pg.11]

Now, it is useful to keep in mind our objective. The variational principle instructs us that as we get closer and closer to the true one-electron ground-state wave function, we will obtain lower and lower energies from our guess. Thus, once wc have selected a basis set, we would like to choose the coefficients a, so as to minimize the energy for all possible linear combinations of our basis functions. From calculus, we know that a necessary condition for a function (i.e., the energy) to be at its minimum is that its derivatives with respect to all of its free variables (i.e., the coefficients a,) are zero. Notationally, that is... [Pg.114]

So, the question arises of how we might modify the HF wave function to obtain a lower electronic energy when we operate on that modified wave function with the Hamiltonian. By the variational principle, such a construction would be a more accurate wave function. We cannot do better than the HF wave function with a single determinant, so one obvious choice is to construct a wave function as a linear combination of multiple determinants, i.e.. [Pg.203]

The spatial orbitals the spin functions 0 and the coefficients of different if a linear combination of is used, may be explicitly determined by invoking the variational principle... [Pg.233]

The precise connection with finite dimensional matrix formulas obtains simply from Lowdin s inner and outer projections [21, 22], see more below, or equivalently from the corresponding Hylleraas-Lippmann-Schwinger-type variational principles [24, 25]. For instance, if we restrict our operator representations to an n-dimensional linear manifold (orthonormal for simplicity) defined by... [Pg.88]

Before undertaking the major subject of variational principles in quantum mechanics, the present chapter is intended as a brief introduction to the extension of variational theory to linear dynamical systems and to classical optimization methods. References given above and in the Bibliography will be of interest to the reader who wishes to pursue this subject in fields outside the context of contemporary theoretical physics and chemistry. The specialized subject of optimization of molecular geometries in theoretical chemistry is treated here in some detail. [Pg.25]

Any multicomponent system whose dynamical behavior is governed by coupled linear equations can be modelled by an effective Lagrangian, quadratic in the system variables. Hamilton s variational principle is postulated to determine the time behavior of the system. A dynamical model of some system of interest is valid if it satisfies the same system of coupled equations. This makes it possible, for example,... [Pg.25]

This part introduces variational principles relevant to the quantum mechanics of bound stationary states. Chapter 4 covers well-known variational theory that underlies modern computational methodology for electronic states of atoms and molecules. Extension to condensed matter is deferred until Part III, since continuum theory is part of the formal basis of the multiple scattering theory that has been developed for applications in this subfield. Chapter 5 develops the variational theory that underlies independent-electron models, now widely used to transcend the practical limitations of direct variational methods for large systems. This is extended in Chapter 6 to time-dependent variational theory in the context of independent-electron models, including linear-response theory and its relationship to excitation energies. [Pg.33]


See other pages where Variation principle linear is mentioned: [Pg.22]    [Pg.22]    [Pg.36]    [Pg.37]    [Pg.48]    [Pg.51]    [Pg.701]    [Pg.190]    [Pg.113]    [Pg.153]    [Pg.155]    [Pg.162]    [Pg.78]    [Pg.254]    [Pg.335]    [Pg.65]    [Pg.10]    [Pg.13]    [Pg.22]    [Pg.263]    [Pg.190]    [Pg.14]    [Pg.91]    [Pg.95]    [Pg.114]    [Pg.116]    [Pg.117]    [Pg.127]    [Pg.76]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Variation Principle Linear Expansion

Variation principle

Variational principle

© 2024 chempedia.info