Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic studies, experimental methods

Experimental design (for example for kinetic studies). This method searches for optimal experimental settings for the next data point [5, 8, 48], especially... [Pg.399]

In order to carry out an experimental study of the kinetics of crystallization, it is first necessary to be able to measure the fraction d of polymer crystallized. While this is necessary, it is not sufficient we must also be able to follow changes in the fraction of crystallinity with time. So far in this chapter we have said nothing about the experimental aspects of determining 6. We shall now briefly rectify this situation by citing some of the methods for determining 6. It must be remembered that not all of these techniques will be suitable for kinetic studies. [Pg.227]

Recognizing that there is presentiy a need for property values for tens of thousands of substances, but experimental data for only a small percentage of these substances, group contribution methods are viewed as the only choices for many problems such as newly or yet-to-be-synthesized compounds, situations where available data are well outside the conditions of interest, and reaction kinetics studies involving unknown intermediates. [Pg.249]

Various experimental methods to evaluate the kinetics of flow processes existed even in the last centuty. They developed gradually with the expansion of the petrochemical industry. In the 1940s, conversion versus residence time measurement in tubular reactors was the basic tool for rate evaluations. In the 1950s, differential reactor experiments became popular. Only in the 1960s did the use of Continuous-flow Stirred Tank Reactors (CSTRs) start to spread for kinetic studies. A large variety of CSTRs was used to study heterogeneous (contact) catalytic reactions. These included spinning basket CSTRs as well as many kinds of fixed bed reactors with external or internal recycle pumps (Jankowski 1978, Berty 1984.)... [Pg.53]

The experimental unit, shown on the previous page, is the simplest assembly that can be used for high-pressure kinetic studies and catalyst testing. The experimental method is measurement of the rate of reaction in a CSTR (Continuous Stirred Tank Reactor) by a steady-state method. [Pg.86]

The many methods used in kinetic studies can be classified in two major approaches. The classical study is based on clarification of the reaction mechanism and derivation of the kinetics from the mechanism. This method, if successful, can supply valuable information, by connecting experimental results to basic information about fundamental steps. During the study of reaction mechanisms many considerations are involved. The first of these is thermodynamics, not only for overall reactions, but also on so-called elementary steps. [Pg.115]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

It may happen that AH is not available for the buffer substance used in the kinetic studies moreover the thermodynamic quantity A//° is not precisely the correct quantity to use in Eq. (6-37) because it does not apply to the experimental solvent composition. Then the experimentalist can determine AH. The most direct method is to measure AH calorimetrically however, few laboratories Eire equipped for this measurement. An alternative approach is to measure K, under the kinetic conditions of temperature and solvent this can be done potentiometrically or by potentiometry combined with spectrophotometry. Then, from the slope of the plot of log K a against l/T, AH is calculated. Although this value is not thermodynamically defined (since it is based on the assumption that AH is temperature independent), it will be valid for the present purpose over the temperature range studied. [Pg.258]

In the last decades, Chemical Physics has attracted an ever increasing amount of interest. The variety of problems, such as those of chemical kinetics, molecular physics, molecular spectros-copy, transport processes, thermodynamics, the study of the state of matter, and the variety of experimental methods used, makes the great development of this field understandable. But the consequence of this breadth of subject matter has been the scattering of the relevant literature in a great number of publications. [Pg.417]

The global rate of the process is r = rj + r2. Of all the authors who studied the whole reaction only Fang et al.15 took into account the changes in dielectric constant and in viscosity and the contribution of hydrolysis. Flory s results fit very well with the relation obtained by integration of the rate equation. However, this relation contains parameters of which apparently only 3 are determined experimentally independent of the kinetic study. The other parameters are adjusted in order to obtain a straight line. Such a method obviously makes the linearization easier. [Pg.81]

There have been remarkably few reviews of the chemistry of decompositions and interactions of solids. The present account is specifically concerned with the kinetic characteristics described in the literature for the reactions of many and diverse compounds. Coverage necessarily includes references to a variety of relevant and closely related topics, such as the background theory of the subject, proposed mechanistic interpretations of observations, experimental methods with their shortcomings and errors, etc. In a survey of acceptable length, however, it is clearly impossible to explore in depth all features of all reports concerned with the reactivity and reactions of all solids. We believe that there is a need for separate and more detailed reviews of topics referred to here briefly. The value of individual publications in the field, which continue to appear in a not inconsiderable flow, would undoubtedly be enhanced by their discussion in the widest context. Systematic presentation and constructive comparisons of observations and reports, which are at present widely dispersed, would be expected to produce significant correlations and conclusions. Useful advances in the subject are just as likely to emerge in the form of generalizations discerned in the wealth of published material as from further individual studies of specific systems. Perhaps potential reviewers have been deterred by the combination of the formidable volume and the extensive dispersal of the information now available. [Pg.283]

Comparison of the BDEs and enthalpies of formation obtained from different experimental approaches can be used to assess the quality of the measurements. Berkowitz, et al. have compared the results of positive ion and negative ion methods for determining BDEs of stable molecules with those obtained from kinetics studies. They found that for most systems, the agreement in the results from the three approaches was excellent. In this section, the results that have been obtained for the enthalpies... [Pg.235]

The experimental method used for this kinetie study is reaetion ealorimetry. In the ealorimeter, the energy enthalpy balance is continuously monitored the heat signal can then be easily converted in the reaction rate (in the case of an isothermal batch reactor, the rate is proportional to the heat generated or consnmed by the reaction). The reaction orders and catalyst stabihty were determined with the methodology of reaction progress kinetic analysis (see refs. (8,9) for reviews). [Pg.225]

Experimental methods in surface science are considered briefly in order to illustrate how experimental data and concepts that emerged from their application could be progressed through evidence from STM at the atom resolved level. They include kinetic, structural, spectroscopic and work function studies. Further details of how these methods provided the experimental data on which much of our present understanding of surfaces and their reactivity can be obtained from other publications listed under Further Reading at the end of this chapter. [Pg.13]

Based on the above considerations, the mode of kinetic study carried over a wide range, is solely a means to express how the fraction, isolated by a certain method, changes quantitatibely in the reaction course. In other words these experimental results are expressed as an equation for convenience sake. And it may be considered as a practical means in applicable form. [Pg.314]

Recently Bogdal [48] observed, using kinetic studies, greater MW rate enhancements when the Knoevenagel reaction of salicylaldehyde with ethyl malonate (vide supra, Scheme 4.15) was performed in toluene than when ethanol was used as the solvent. The calculated rate constants in toluene solution were more than three times higher under MW irradiation than under conventional conditions, whereas the rate constants of the reaction in ethanol were the same, within experimental error, under both heating methods. [Pg.130]

From the discussion presented of reactions in solids, it should be apparent that it is not practical in most cases to determine the concentration of some species during a kinetic study. In fact, it may be necessary to perform the analysis in a continuous way as the sample reacts with no separation necessary or even possible. Experimental methods that allow measurement of the progress of the reaction, especially as the temperature is increased, are particularly valuable. Two such techniques are thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These techniques have become widely used to characterize solids, determine thermal stability, study phase changes, and so forth. Because they are so versatile in studies on solids, these techniques will be described briefly. [Pg.266]

The initiating action of ozone on hydrocarbon oxidation was demonstrated in the case of oxidation of paraffin wax [110] and isodecane [111]. The results of these experiments were described in a monograph [109]. The detailed kinetic study of cyclohexane and cumene oxidation by a mixture of dioxygen and ozone was performed by Komissarov [112]. Ozone is known to be a very active oxidizing agent [113 116]. Ozone reacts with C—H bonds of hydrocarbons and other organic compounds with free radical formation, which was proved by different experimental methods. [Pg.130]

The quantity and quality of experimental information determined by the new techniques call for the use of comprehensive data treatment and evaluation methods. In earlier literature, quite often kinetic studies were simplified by using pseudo-first-order conditions, the steady-state approach or initial rate methods. In some cases, these simplifications were fully justified but sometimes the approximations led to distorted results. Autoxidation reactions are particularly vulnerable to this problem because of strong kinetic coupling between the individual steps and feed-back reactions. It was demonstrated in many cases, that these reactions are very sensitive to the conditions applied and their kinetic profiles and stoichiometries may be significantly altered by changing the pH, the absolute concentrations and concentration ratios of the reactants, and also by the presence of trace amounts of impurities which may act either as catalysts and/or inhibitors. [Pg.456]

By lifting the simplifying restrictions, the kinetic observations can be examined in more detail over much wider concentration ranges of the reactants than those relevant to pseudo-first-order conditions. It should be added that sometimes a composite kinetic trace is more revealing with respect to the mechanism than the conventional concentration and pH dependencies of the pseudo-first-order rate constants. Simultaneous evaluation of the kinetic curves obtained with different experimental methods, and recorded under different conditions, is based on fitting the proposed kinetic models directly to the primary data. This method yields more accurate estimates for the rate constants than conventional procedures. Such an approach has been used sporadically in previous studies, but it is expected to be applied more widely and gain significance in the near future. [Pg.456]

Any chemical species, which under ambient conditions (i.e., a temperature around 25 °C, and a pressure close to 1 atm) will, for a combination of kinetic and thermodynamic reasons, decay on a timescale ranging from microseconds, or even nanoseconds, to a few minutes can be classified as a short-lived compound. According to this definition, suggested by Almond [277], it is clear that the experimental methods described in previous chapters can only be used to study the thermochemistry of long-lived substances. [Pg.190]

Historically, some of those approaches have been developed with a considerable degree of independence, leading to a proliferation of thermochemical concepts and conventions that may be difficult to grasp. Moreover, the past decades have witnessed the development of new experimental methods, in solution and in the gas phase, that have allowed the thermochemical study of neutral and ionic molecular species not amenable to the classic calorimetric and noncalorimetric techniques. Thus, even the expert reader (e.g., someone who works on thermochemistry or chemical kinetics) is often challenged by the variety of new and sophisticated methods that have enriched the literature. For example, it is not uncommon for a calorimetrist to have no idea about the reliability of mass spectrometry data quoted from a paper many gas-phase kineticists ignore the impact that photoacoustic calorimetry results may have in their own field most experimentalists are notoriously unaware of the importance of computational chemistry computational chemists often compare their results with less reliable experimental values and the consistency of thermochemical data is a frequently ignored issue and responsible for many inaccuracies in literature values. [Pg.302]


See other pages where Kinetic studies, experimental methods is mentioned: [Pg.11]    [Pg.67]    [Pg.2966]    [Pg.224]    [Pg.221]    [Pg.220]    [Pg.25]    [Pg.68]    [Pg.76]    [Pg.98]    [Pg.346]    [Pg.312]    [Pg.228]    [Pg.105]    [Pg.55]    [Pg.436]    [Pg.391]    [Pg.21]    [Pg.228]    [Pg.20]    [Pg.30]    [Pg.452]    [Pg.198]    [Pg.36]    [Pg.184]    [Pg.69]   


SEARCH



Experimental studies

Kinetic experimental methods

Kinetic methods

Kinetic studies

Kinetic studies method

Kinetic studies, experimental methods apparatus

Kinetic studies, experimental methods electrical

Kinetic studies, experimental methods flow systems

Kinetic studies, experimental methods optical

Kinetic studies, experimental methods pressure measurements

Kinetic studies, experimental methods sampling

Kinetic studies, experimental methods thermal

Kinetics method

Kinetics, studies

Study methods

© 2024 chempedia.info