Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst stabihty

The experimental method used for this kinetie study is reaetion ealorimetry. In the ealorimeter, the energy enthalpy balance is continuously monitored the heat signal can then be easily converted in the reaction rate (in the case of an isothermal batch reactor, the rate is proportional to the heat generated or consnmed by the reaction). The reaction orders and catalyst stabihty were determined with the methodology of reaction progress kinetic analysis (see refs. (8,9) for reviews). [Pg.225]

Friedel-Crafts alkylations are among the most important reactions in organic synthesis. Solid acid catalysts have advantages in ease of product recovery, reduced waste streams, and reduction in corrosion and toxicity. In the past, people have used (pillared) clays (18), heteropolyacids (19) and zeohtes (20) for Friedel-Craft alkylations, with mixed success. Problems included poor catalyst stabihty and low activity. Benzylation of benzene using benzyl chloride is interesting for the preparation of substitutes of polychlorobenzene in the apphcation of dielectrics. The performance of Si-TUD-1 with different heteroatoms (Fe, Ga, Sn and Ti) was evaluated, and different levels of Fe inside Si-TUD-1 (denoted Fei, Fe2, Fes and Feio) were evaluated (21). The synthesis procedure of these materials was described in detail elsewhere (22). [Pg.372]

Matsumoto and Tamura (at Kuraray Co.) have demonstrated that the combination of simple bis(diphenylphosp-hino)alkane ligands and PPhs has a very positive effect on catalyst stabihty and the reduction of unwanted side reactions. This is most evident in the hydroformylation of a reactive alkene substrate such as allyl alcohol. The use of HRh(CO)(PPh3)2 in the presence of excess PPhs leads to relatively rapid catalyst deactivation to unidentified species. The addition of just over 1 equivalent of dppb, for example, leads to a stable, active hydroformylation catalyst. Use of dppb either by itself, or in quantities higher than 2 equivalents, leads to catalyst deactivation and/or poor activities and selectivities. ARCO Chemical Co. licensed the Kuraray technology to build the first conunercial plant (1990) for the hydroformylation of allyl alcohol to produce 1,4-butanediol (Scheme 11). [Pg.667]

The use of inorganic supramolecular compounds in catalysis has also been successful in recent years. Hupp etal. incorporated a Mn(IIl)-porphyrm (see Porphyrin) epoxidation catalyst inside a molecular square, a system that shows enhanced catalyst stabihty and substrate selectivity as compared to the free catalyst. In another example, chiral metaUocyclophanes were constructed from Pt(PEt3)2 units and enantiopme atropoisomeric t,t -binapthyl-6,6 -bis-(acetylenes) and used in enantioselective diethyl zinc addition to aldehydes to afford chiral secondary alcohols. The first organometaUic triangle based on Pt(II) and alkyne-di-substituted-binaphfhyl system was reported and found to effect asymmetric catalysis reactions of aldehydes to alcohols with excellent conversion rates and enantiomeric excess/ ... [Pg.5723]

During the past 20 years, solid-supported organic catalysts have become powerful synthetic tools readily available to the chemical community. The reasons for developing an immobihzed version of a chiral catalyst go weU beyond the simple-yet still fundamental-aspect of the recovery and recycling of the precious catalytic species. Catalyst stabihty, structural characterization, catalytic behavior, new or different solubihty properties, simphfication of the reaction work-up, catalyst discovery and optimization, use in environmentally friendly or green solvents are all issues that may be converhently addressed working with supported systems. [Pg.319]

The main driving forces behind the development of new tertiary phosphine palladium complexes for C(sp )—C(sp) couplings have been (i) a reduction or elimination of side reactions, such as Glaser-type homocouplings (ii) the development of environmentally friendly reaction protocols, such as copper-free reactions in benign solvents (iii) the improvement of catalyst stabihty and activity [higher turnover number (TON) and turnover frequency (TOP)] and (iv) a cost reduction by using less-expensive aryl bromides, or even aryl chlorides under mild reaction conditions, for example, at ambient temperature. [Pg.186]


See other pages where Catalyst stabihty is mentioned: [Pg.469]    [Pg.482]    [Pg.196]    [Pg.159]    [Pg.482]    [Pg.350]    [Pg.1416]    [Pg.18]    [Pg.18]    [Pg.374]    [Pg.251]    [Pg.340]    [Pg.117]    [Pg.192]    [Pg.173]    [Pg.233]    [Pg.606]    [Pg.391]    [Pg.111]    [Pg.1284]    [Pg.78]   
See also in sourсe #XX -- [ Pg.33 , Pg.563 ]




SEARCH



Stabihty

© 2024 chempedia.info