Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic studies, experimental methods sampling

From the discussion presented of reactions in solids, it should be apparent that it is not practical in most cases to determine the concentration of some species during a kinetic study. In fact, it may be necessary to perform the analysis in a continuous way as the sample reacts with no separation necessary or even possible. Experimental methods that allow measurement of the progress of the reaction, especially as the temperature is increased, are particularly valuable. Two such techniques are thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These techniques have become widely used to characterize solids, determine thermal stability, study phase changes, and so forth. Because they are so versatile in studies on solids, these techniques will be described briefly. [Pg.266]

Kinetic studies of ECE processes (sometimes called a DISP mechanism when the second electron transfer occurs in bulk solution) [3] are often best performed using a constant-potential technique such as chronoamperometry. The advantages of this method include (1) relative freedom from double-layer and uncompensated iR effects, and (2) a new value of the rate constant each time the current is sampled. However, unlike certain large-amplitude relaxation techniques, an accurately known, diffusion-controlled value of it1/2/CA is required of each solution before a determination of the rate constant can be made. In the present case, diffusion-controlled values of it1/2/CA corresponding to n = 2 and n = 4 are obtained in strongly acidic media (i.e., when kt can be made small) and in solutions of intermediate pH (i.e., when kt can be made large), respectively. The experimental rate constant is then determined from a dimensionless working curve for the proposed reaction scheme in which the apparent value of n (napp) is plotted as a function of kt. [Pg.632]

This method is also referred to as the miscible-displacement or continuous-flow method. In this method a thin disk of dispersed solid phase is deposited on a porous membrane and placed in a holder. A pump is used to maintain a constant flow velocity of solution through the thin disk and a fraction collector is used to collect effluent aliquots. A diagram of the basic experimental setup is shown in Fig. 2-6. A thin disk is used in an attempt to minimize diffusion resistances in the solid phase. Disk thickness, disk hydraulic conductivity, and membrane permeability determine the range of flow velocities that are achievable. Dispersion of the solid phase is necessary so that the transit time for a solute molecule is the same at all points in the disk. However, the presence of varying particle sizes and hence pore sizes may produce nonuniform solute transit times (Skopp and McCallister, 1986). This is more likely to occur with whole soils than with clay-sized particles of soil constituents. Typically, 1- or 2-g samples are used in kinetic studies on soils with the thin disk method, but disk thicknesses have not been measured. In their study of the kinetics of phosphate and silicate retention by goethite, Miller et al. (1989) estimated the thickness of the goethite disk to be 80 /xm. [Pg.36]

The study and control of a chemical process may be accomplished by measuring the concentrations of the reactants and the properties of the end-products. Another way is to measure certain quantities that characterize the conversion process, such as the quantity of heat output in a reaction vessel, the mass of a reactant sample, etc. Taking into consideration the special features of the chemical molding process (transition from liquid to solid and sometimes to an insoluble state), the calorimetric method has obvious advantages both for controlling the process variables and for obtaining quantitative data. Calorimetric measurements give a direct correlation between the transformation rates and heat release. This allows to monitor the reaction rate by observation of the heat release rate. For these purposes, both isothermal and non-isothermal calorimetry may be used. In the first case, the heat output is effectively removed, and isothermal conditions are maintained for the reaction. This method is especially successful when applied to a sample in the form of a thin film of the reactant. The temperature increase under these conditions does not exceed IK, and treatment of the experimental results obtained is simple the experimental data are compared with solutions of the differential kinetic equation. [Pg.97]

Then, a survey of micro reactors for heterogeneous catalyst screening introduces the technological methods used for screening. The description of microstructured reactors will be supplemented by other, conventional small-scale equipment such as mini-batch and fixed-bed reactors and small monoliths. For each of these reactors, exemplary applications will be given in order to demonstrate the properties of small-scale operation. Among a number of examples, methane oxidation as a sample reaction will be considered in detail. In a detailed case study, some intrinsic theoretical aspects of micro devices are discussed with respect to reactor design and experimental evaluation under the transient mode of reactor operation. It will be shown that, as soon as fluid dynamic information is added to the pure experimental data, more complex aspects of catalysis are derivable from overall conversion data, such as the intrinsic reaction kinetics. [Pg.415]


See other pages where Kinetic studies, experimental methods sampling is mentioned: [Pg.2966]    [Pg.391]    [Pg.395]    [Pg.76]    [Pg.125]    [Pg.241]    [Pg.95]    [Pg.264]    [Pg.2966]    [Pg.66]    [Pg.30]    [Pg.287]    [Pg.46]    [Pg.370]    [Pg.833]    [Pg.183]    [Pg.75]    [Pg.2]    [Pg.233]    [Pg.558]    [Pg.12]    [Pg.281]    [Pg.224]    [Pg.437]    [Pg.194]    [Pg.57]    [Pg.194]    [Pg.328]    [Pg.353]    [Pg.120]    [Pg.85]    [Pg.513]    [Pg.198]    [Pg.135]    [Pg.24]    [Pg.65]    [Pg.210]    [Pg.232]    [Pg.67]    [Pg.405]    [Pg.322]    [Pg.49]    [Pg.347]    [Pg.69]    [Pg.330]    [Pg.63]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Experimental methods sampling

Experimental studies

Kinetic experimental methods

Kinetic methods

Kinetic sampling

Kinetic studies

Kinetic studies method

Kinetic studies, experimental methods

Kinetics method

Kinetics, studies

Sample methods

Sampling methods

Study methods

© 2024 chempedia.info