Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutylene manufacture

There has been an enormous technological interest in tertfa/j-butanol (tBA) dehydration during the past thirty years, first as a primary route to methyl te/f-butyl ether (MTBE) (1) and more recently for the production of isooctane and polyisobutylene (2). A number of commercializable processes have been developed for isobutylene manufacture (eq 1) in both the USA and Japan (3,4). These processes typically involve either vapor-phase tBA dehydration over a silica-alumina catalyst at 260-370°C, or liquid-phase processing utilizing either homogenous (sulfonic acid), or solid acid catalysis (e.g. acidic cationic resins). More recently, tBA dehydration has been examined using silica-supported heteropoly acids (5), montmorillonite clays (6), titanosilicates (7), as well as the use of compressed liquid water (8). [Pg.469]

Oppanol B n. Poly(isobutylene), manufactured by BASF, Germany. [Pg.678]

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

With the avadabihty of polymerization catalysts, extensive efforts were devoted to developing economical processes for manufacture of isoprene. Several synthetic routes have been commercialized. With natural mbber as an alternative, the ultimate value of the polymer was more or less dictated by that market. The first commercial use of isoprene in the United States started in 1940. It was used as a minor comonomer with isobutylene for the preparation of butyl mbber. Polyisoprene was commercialized extensively in the 1960s (6). In the 1990s isoprene is used almost exclusively as a monomer for polymerization (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE). [Pg.462]

Manufacture and Processing Alkylphenols of commercial importance are generally manufactured by the reaction of an alkene with phenol in the presence of an acid catalyst. The alkenes used vary from single species, such as isobutylene, to compHcated mixtures, such as propylene tetramer (dodecene). The alkene reacts with phenol to produce mono alkylphenols, dialkylphenols, and tri alkylphenols. The mono alkylphenols comprise 85% of all alkylphenol production. [Pg.62]

Ritter Reaction (Method 4). A small but important class of amines are manufactured by the Ritter reaction. These are the amines in which the nitrogen atom is adjacent to a tertiary alkyl group. In the Ritter reaction a substituted olefin such as isobutylene reacts with hydrogen cyanide under acidic conditions (12). The resulting formamide is then hydroly2ed to the parent primary amine. Typically sulfuric acid is used in this transformation of an olefin to an amine. Stoichiometric quantities of sulfate salts are produced along with the desired amine. [Pg.200]

There are other commercial processes available for the production of butylenes. However, these are site or manufacturer specific, eg, the Oxirane process for the production of propylene oxide the disproportionation of higher olefins and the oligomerisation of ethylene. Any of these processes can become an important source in the future. More recentiy, the Coastal Isobutane process began commercialisation to produce isobutylene from butanes for meeting the expected demand for methyl-/ rZ-butyl ether (40). [Pg.366]

Separation and Purification of Isomers. 1-Butene and isobutylene caimot be economically separated into pure components by conventional distHlation because they are close boiling isomers (see Table 1 and Eig. 1). 2-Butene can be separated from the other two isomers by simple distHlation. There are four types of separation methods avaHable (/) selective removal of isobutylene by polymeriza tion and separation of 1-butene (2) use of addition reactions with alcohol, acids, or water to selectively produce pure isobutylene and 1-butene (3) selective extraction of isobutylene with a Hquid solvent, usuaHy an acid and (4) physical separation of isobutylene from 1-butene by absorbents. The first two methods take advantage of the reactivity of isobutylene. Eor example, isobutylene reacts about 1000 times faster than 1-butene. Some 1-butene also reacts and gets separated with isobutylene, but recovery of high purity is possible. The choice of a particular method depends on the product slate requirements of the manufacturer. In any case, 2-butene is first separated from the other two isomers by simple distHlation. [Pg.368]

Among the butylenes, isobutylene has become one of the important starting materials for the manufacture of polymers and chemicals. There are ... [Pg.370]

It competes direedy with MTBE as an octane enhancer in the gasoline pool. Since MTBE is more desirable than tert-huty alcohol because of its total miscibility with gasoline, tert-huty alcohol wiU be an important source of isobutylene used in the manufacture of MTBE. High purity isobutylene, C Hg, can be obtained by dehydration of tert-huty alcohol, C H qO. [Pg.372]

ButylatedHydroxyAnisole (BHA). This material is an oxidation inhibitor and has been accepted for use in foods where the use of butylated hydroxytoluene (BHT) is restricted (see Food additives). It is manufactured by the alkylation of 4-hydroxyanisole [150-76-5] with isobutylene that yields a mixture of 2- and S-Z fZ-butyl isomers as products (124). [Pg.373]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

Rhodium catalyst is used to convert linear alpha-olefins to heptanoic and pelargonic acids (see Carboxylic acids, manufacture). These acids can also be made from the ozonolysis of oleic acid, as done by the Henkel Corp. Emery Group, or by steam cracking methyl ricinoleate, a by-product of the manufacture of nylon-11, an Atochem process in France (4). Neoacids are derived from isobutylene and nonene (4) (see Carboxylic acids, trialkylacetic acids). [Pg.94]

Monomers for manufacture of butyl mbber are 2-methylpropene [115-11-7] (isobutylene) and 2-methyl-l.3-butadiene [78-79-5] (isoprene) (see Olefins). Polybutenes are copolymers of isobutylene and / -butenes from mixed-C olefin-containing streams. For the production of high mol wt butyl mbber, isobutylene must be of >99.5 wt % purity, and isoprene of >98 wt % purity is used. Water and oxygenated organic compounds iaterfere with the cationic polymerization mechanism, and are minimized by feed purification systems. [Pg.480]

A partially cross-linked, isobutylene—isoprene—divinylbenzene terpolymer containing some unreacted substituted vinylbenzene appendages is commercially available from Polysar Division, Bayer AG. Because of the residual reactive functionality, it can be cross-linked by peroxides that degrade conventional butyl mbbets. It is employed primarily in the manufacture of sealant tapes and caulking compounds (31). [Pg.481]

The most common ethers being used as additives are methyl tertiary butyl ether (MTBE), and tertiary amyl methyl ether (TAME). Many of the larger refineries manufacture their own supplies of MTBE and TAME by reacting isobutylene and/or isoamylene with methanol. Smaller refineries usually buy their supplies from chemical manufacturers or the larger refineries. [Pg.99]

The initiator can be a radical, an acid, or a base. Historically, as we saw in Section 7.10, radical polymerization was the most common method because it can be carried out with practically any vinyl monomer. Acid-catalyzed (cationic) polymerization, by contrast, is effective only with vinyl monomers that contain an electron-donating group (EDG) capable of stabilizing the chain-carrying carbocation intermediate. Thus, isobutylene (2-methyl-propene) polymerizes rapidly under cationic conditions, but ethylene, vinyl chloride, and acrylonitrile do not. Isobutylene polymerization is carried out commercially at -80 °C, using BF3 and a small amount of water to generate BF3OH- H+ catalyst. The product is used in the manufacture of truck and bicycle inner tubes. [Pg.1207]

The next 10 chapters cover a collection of petrochemicals not altogether related to each other. Synthesis gas is a basic building block that leads to the manufacture of ammonia and methanol. MTBE is made from methanol from synthesis gas (with a little isobutylene thrown in). The alcohols in Chapter 14 and 15, the aldehydes in 16, the ketones in 17, and the acids in 18 are all closely related to each other by looks, though the routes to get to them are perplexingly different. Alpha olefins and the plasticizer and detergent alcohols have the same roots and routes, but different ones from the rest. Maleic anhydride, acrylonitrile, and the acrylates— well, they re all used to make polymers and they had to be somewhere. [Pg.171]

Mixed C4 olefins (primarily iC4) are isolated from a mixed C olefin and paraffin stream. Two different liquid adsorption high-purity C olefin processes exist the C4 Olex process for producing isobutylene (iCf ) and the Sorbutene process for producing butene-1. Isobutylene has been used in alcohol synthesis and the production of methyl tert-butyl ether (MTBE) and isooctane, both of which improve octane of gasoHne. Commercial 1-butene is used in the manufacture of both hnear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE)., polypropylene, polybutene, butylene oxide and the C4 solvents secondary butyl alcohol (SBA) and methyl ethyl ketone (MEK). While the C4 Olex process has been commercially demonstrated, the Sorbutene process has only been demonstrated on a pilot scale. [Pg.266]

Uses Copolymerized with methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, or 1,1-dichloroethylene to produce acrylic and modacrylic fibers and high-strength fibers ABS (acrylonitrile-butadiene-styrene) and acrylonitrile-styrene copolymers nitrile rubber cyano-ethylation of cotton synthetic soil block (acrylonitrile polymerized in wood pulp) manufacture of adhesives organic synthesis grain fumigant pesticide monomer for a semi-conductive polymer that can be used similar to inorganic oxide catalysts in dehydrogenation of tert-butyl alcohol to isobutylene and water pharmaceuticals antioxidants dyes and surfactants. [Pg.81]

Chemicals obtained from jjetroleum having four carbons are manufactured at a considerably lower scale than ethylene or propylene derivatives. Only five C4 compounds— butadiene, acetic acid, vinyl acetate, isobutylene, and methyl /-butyl ether (MTBE)— appear in the top 50. The manufacture of butadiene and isobutylene, as well as the separation of other C4 compounds from petroleum, is described in Chapter 8, Sections 3-5. Acetic acid was discussed as a derivative of ethylene in Chapter 9, Section 3 and is discussed as a derivative of methane in Chapter 12, Section 3. Vinyl acetate was discussed in Chapter 9, Section 4. A few important derivatives of C4 chemistiy will be briefly mentioned here as well as MTBE. [Pg.179]

In 1984 methyl t-butyl ether (MTBE) broke into the top 50 for the first time with a meteoric rise in production from 0.8 billion lb in 1983 to 1.47 billion lb in 1984 to be ranked 47. In 1990 it was 24 with production over 6 billion lb, and in 1995 it was 12 at 18 billion lb. A full discussion of the current economic status of MTBE is given in Chapter 7, Section 4 as the important gasoline octane enhancer. That is its only major use. MTBE is manufactured by the acid catalyzed electrophilic addition of methanol to isobutylene. [Pg.182]

Table 12.2 gives the uses for methanol. The percentage of methanol used in the manufacture of formaldehyde has been fluctuating. It was 42% in 1981. It has decreased in part because of recent toxicity scares of formaldehyde. The percentage of methanol used in acetic acid manufacture is up from 7% in 1981 because the carbonylation of methanol has become the preferred acetic acid manufacturing method. MTBE is the octane enhancer and is synthesized directly from isobutylene and methanol. It was... [Pg.207]

Isobutylene, like the other olefins already discussed, is a by-product of petroleum cracking and could be produced by the petroleum industry in large amounts by dehydrogenation of the corresponding paraffin. Since 1944 the principal outlet for isobutylene, excluding use in the manufacture of fuels, has been for direct polymerization to polyisobutylene and Butyl rubber (GR-I). [Pg.319]

C4 Alkenes. Several industrial processes have been developed for olefin production through catalytic dehydrogenation138 166 167 of C4 alkenes. All four butenes are valuable industrial intermediates used mostly for octane enhancement. Isobutylene, the most important isomer, and its dimer are used to alkylate isobutane to produce polymer and alkylate gasoline (see Section 5.5.1). Other important utilizations include oxidation to manufacture maleic anhydride (see Section 9.5.4) and hydroformylation (see Section 7.1.3). [Pg.48]


See other pages where Isobutylene manufacture is mentioned: [Pg.1052]    [Pg.800]    [Pg.1052]    [Pg.800]    [Pg.387]    [Pg.187]    [Pg.249]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.103]    [Pg.481]    [Pg.487]    [Pg.428]    [Pg.99]    [Pg.225]    [Pg.4]    [Pg.562]    [Pg.776]    [Pg.46]    [Pg.248]    [Pg.86]    [Pg.118]    [Pg.288]    [Pg.312]   


SEARCH



Isobutylene

© 2024 chempedia.info