Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interferometric

In this work, a microwave interferometric method and apparatus for vibration measurements is described. The principle of operation is based on measurement of the phase of reflected electromagnetic wave changing due to vibration. The most important features of the method are as follows simultaneous measurement of tlie magnitude and frequency of the rotating object high measurement accuracy weak influence of the roll diameter, shape and distance to the object under test. Besides, tlie reflecting surface can be either metallic or non-metallic. Some technical characteristics are given. [Pg.654]

Fig. 1 shows the block diagram of the vibrometer, in which the most sensible to small phase variations interferometric scheme is employed. It consists of the microwave and the display units. The display unit consists of the power supply 1, controller 2 of the phase modulator 3, microprocessor unit 9 and low-frequency amplifier 10. The microwave unit contains the electromechanical phase modulator 3, a solid-state microwave oscillator 4, an attenuator 5, a bidirectional coupler 6, a horn antenna 7 and a microwave detector 11. The horn antenna is used for transmitting the microwave and receiving the reflected signal, which is mixed with the reference signal in the bidirectional coupler. In the reference channel the electromechanical phase modulator is used to provide automatic calibration of the instrument. To adjust the antenna beam to the object under test, the microwave unit is placed on the platform which can be shifted in vertical and horizontal planes. [Pg.655]

A major advance in force measurement was the development by Tabor, Win-terton and Israelachvili of a surface force apparatus (SFA) involving crossed cylinders coated with molecularly smooth cleaved mica sheets [11, 28]. A current version of an apparatus is shown in Fig. VI-4 from Ref. 29. The separation between surfaces is measured interferometrically to a precision of 0.1 nm the surfaces are driven together with piezoelectric transducers. The combination of a stiff double-cantilever spring with one of a number of measuring leaf springs provides force resolution down to 10 dyn (10 N). Since its development, several groups have used the SFA to measure the retarded and unretarded dispersion forces, electrostatic repulsions in a variety of electrolytes, structural and solvation forces (see below), and numerous studies of polymeric and biological systems. [Pg.236]

SIAM Scanning interferometric apertureless microscopy [103b] Laser light is reflected off the substrate, and scattering between an AFM tip and sample is processed interferometrically Diffraction Surface structure... [Pg.313]

Schaertel S A, Albrecht A C, Lau A and Kummrow A 1994 Interferometric coherent Raman spectroscopy with incoherent light some applications Appi. Rhys. B 59 377-87... [Pg.1229]

Schaertel S A and Albrecht A C 1994 Interferometric coherent Raman spectroscopy resonant and non-resonant contributions J. Raman Spectrosc. 25 545-55... [Pg.1229]

Ulness D J, Stimson M J, Kirkwood J C and Albrecht A C 1997 Interferometric downconversion of high frequency molecular vibrations with time-frequency-resolved coherent Raman scattering using quasi-cw noisy laser light C-H stretching modes of chloroform and benzene J. Rhys. Chem. A 101 4587-91... [Pg.1229]

High angular resolution studies with modem THz telescopes and interferometric arrays can even probe the... [Pg.1242]

Detection of cantilever displacement is another important issue in force microscope design. The first AFM instrument used an STM to monitor the movement of the cantilever—an extremely sensitive method. STM detection suffers from the disadvantage, however, that tip or cantilever contamination can affect the instrument s sensitivity, and that the topography of the cantilever may be incorporated into the data. The most coimnon methods in use today are optical, and are based either on the deflection of a laser beam [80], which has been bounced off the rear of the cantilever onto a position-sensitive detector (figme B 1.19.18), or on an interferometric principle [81]. [Pg.1693]

Compared witii other direct force measurement teclmiques, a unique aspect of the surface forces apparatus (SFA) is to allow quantitative measurement of surface forces and intermolecular potentials. This is made possible by essentially tliree measures (i) well defined contact geometry, (ii) high-resolution interferometric distance measurement and (iii) precise mechanics to control the separation between the surfaces. [Pg.1731]

The absolute measurement of the distance, D, between the surfaces is central to the SFA teclmique. In interferometric SFAs, it is realized tluough an optical method called multiple beam interferometry (MBI), which has been described by Tolansky [47]. [Pg.1733]

An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]

Gires F and Tournois P 1964 Interferometre utilisable pour la compression d impulsions lumineuses modulees en frequence Compte Rendue Acad. Sc/. Paris 258 6112-15... [Pg.1993]

Interferometric systems, usually heflum-neon lasers, offer precise distance measurement over a scale of distances <100 m and in an indoor environment. Such devices are suitable for dimensional control of machine tools (see Machining MATERIALS, ELECTROCHEMICAL). [Pg.14]

A method which competes with interferometric distance measurement is laser Doppler displacement. In this approach the Doppler shift of the beam reflected from a target is measured and integrated to obtain displacement. This method also is best suited to use indoors at distances no more than a few hundred meters. Table 2 compares some of the characteristics of these laser-based methods of distance measurement. [Pg.14]

When the spectral characteristics of the source itself are of primary interest, dispersive or ftir spectrometers are readily adapted to emission spectroscopy. Commercial instmments usually have a port that can accept an input beam without disturbing the usual source optics. Infrared emission spectroscopy at ambient or only moderately elevated temperatures has the advantage that no sample preparation is necessary. It is particularly appHcable to opaque and highly scattering samples, anodized and painted surfaces, polymer films, and atmospheric species (135). The interferometric... [Pg.315]

Circular dichroism employs standard dispersive or interferometric instmmentation, but uses a thermal source that is rapidly modulated between circular polari2ation states using a photoelastic or electro-optic modulator. Using phase-sensitive detection, a difference signal proportional to the absorption difference between left- and right-polari2ed light, AA is recorded as a function of wavenumber. Relative differential absorptions... [Pg.319]

The advent of lasers allowed optical interferometry to become a useful and accurate technique to determine surface motion in shocked materials. The two most commonly used interferometric systems are the VISAR (Barker and Hollenbach, 1972) and the Fabry-Perot velocity interferometer (Johnson and Burgess, 1968 Durand et al., 1977). Both systems produce interference fringe shifts which are proportional to the Doppler shift of the laser light reflected from the moving specimen surface. Both can accommodate a speci-... [Pg.56]

Figure 3.12. Experimental configuration and velocity profiles demonstrating the use of VISAR interferometric techniques in pressure-shear instrumentation to determine in-plane shear motion as well as longitudinal (P-wave) motion (Chhabildas and Swegle, 1980). Figure 3.12. Experimental configuration and velocity profiles demonstrating the use of VISAR interferometric techniques in pressure-shear instrumentation to determine in-plane shear motion as well as longitudinal (P-wave) motion (Chhabildas and Swegle, 1980).
Even though the LDA principle is based on the optical Doppler effect, its lifelike interferometric interpretation is presented here. [Pg.1170]

X 0.75 cm) Ve i = 28 ml = 50 ml eluent 0.05 M NaCI flow rate 0.80 ml/min detection Optilab 903 interferometric differential refractometer applied sample mass/volume 200 /tl of 2-mg/ml aqueous solutions sum of individual chromatograms (theory —) and (theory/experimental) ratio (—) plotted for quantification of deviations in separation performance between narrow distributed samples and broad distributed samples. [Pg.495]

Popular methods for mutual diffusion measurements in fluid systems are the Taylor dispersion method and interferometric methods, such as Digital Image Holography [13, 14]. [Pg.165]

Independent arrays of telescopes have been discussed for decades but have generally not been successful, except for radio telescopes, where interferometry is a key virtue, aided by the fact that the individual telescope signals can be amplihed and combined while preserving phase information. This is not practical in the optical, thus there are significant inefficiencies in sensitivity by coherently combining the light from an array of optical telescopes. Instrumentation for an array of telescopes has also been a cause of difficulty. Perhaps the best known successful array has been the VLT with four 8-m telescopes, each with its own suite of science instruments, and the capacity to combine all telescopes together for Interferometric measurements. [Pg.66]

Abstract This lecture addresses the optical testing of concave aspheric mirrors. Examples of measurements of low order aberrations are shown. There are noises and bisases due to environmental effects, such as air turbulence, mirror temperature. Methods of interferometric testing are discussed. [Pg.97]

Because of the commercial availability of interferometers that have a repeatability around 1 nm peak-to-valley (P-V) at any pixel location in the detector, the discussion will be limited to the use of interferometric tests but the principles apply to any type of optical test device. Using this 1 nm repeatability as a benchmark, it will be easy to demonstrate where some of the other testing problems occur long before we hit the repeatability benchmark. [Pg.98]


See other pages where Interferometric is mentioned: [Pg.680]    [Pg.693]    [Pg.341]    [Pg.363]    [Pg.1165]    [Pg.1209]    [Pg.1209]    [Pg.1699]    [Pg.1732]    [Pg.1990]    [Pg.1061]    [Pg.203]    [Pg.15]    [Pg.2]    [Pg.14]    [Pg.392]    [Pg.61]    [Pg.432]    [Pg.492]    [Pg.177]    [Pg.30]    [Pg.65]    [Pg.78]   
See also in sourсe #XX -- [ Pg.342 , Pg.345 , Pg.346 , Pg.347 , Pg.356 ]




SEARCH



Autocorrelation interferometric

Detection interferometric

Fabry-Perot interferometric sensors

INDEX interferometric method

Interferometre

Interferometre

Interferometric Image Synthesis The Dirty Data Cube

Interferometric Shaping with a Single Laser

Interferometric Systems

Interferometric cantilever detection

Interferometric infrared

Interferometric infrared spectroscopy

Interferometric instruments

Interferometric lithography

Interferometric nonlinear microscopy

Interferometric optical profile

Interferometric spectrometer

Interferometric spectrophotometers

Interferometric spectroscopy

Interferometric techniques

Interferometric techniques applications

Interferometric techniques calculations

Interferometric trace

Laser interferometric fringes

Laser interferometric microscopy

Laser-interferometric creep rate meter

Liquid interferometric

Mach-Zehnder interferometric sensors

Multiple-beam interferometr

Phase-measurement interferometric microscopy

Radio Interferometric Image Restoration

Radio-Interferometric Array

Reflective interferometric Fourier-transform

Scanning interferometric apertureless

Sensor interferometric

Spectroscopy laser-interferometric creep rate

Time-resolved interferometric laser

© 2024 chempedia.info