Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon fuels methane fuel

Because some hydrocracking occurs, Powerforming also produces saturated C to Q light hydrocarbons. The methane and ethane formed normally are consumed as refinery fuel. Propane and butane products are frequently marketed as LPG. The relative quantities of each of these products vary considerably with feed quality, operating conditions and octane severity. [Pg.48]

In the conventional gas turbine plant, a hydrocarbon fuel (e.g. methane CH4) is burnt, usually with excess air, i.e. more air than is required for stoichiometric combustion. [Pg.140]

In the phosphoric acid fuel cell as currently practiced, a premium (hydrogen rich) hydrocarbon (e.g. methane) fuel is steam reformed to produce a hydrogen feedstock to the cell stack for direct (electrochemical) conversion to electrical energy. At the fuel electrode, hydrogen ionization is accomplished by use of a catalytic material (e.g. Pt, Pd, or Ru) to form solvated protons. [Pg.575]

NASA conducted studies on the development of the catalysts for methane decomposition process for space life-support systems [94], A special catalytic reactor with a rotating magnetic field to support Co catalyst at 850°C was designed. In the 1970s, a U.S. Army researcher M. Callahan [95] developed a fuel processor to catalytically convert different hydrocarbon fuels to hydrogen, which was used to feed a 1.5 kW FC. He screened a number of metals for the catalytic activity in the methane decomposition reaction including Ni, Co, Fe, Pt, and Cr. Alumina-supported Ni catalyst was selected as the most suitable for the process. The following rate equation for methane decomposition was reported ... [Pg.76]

The plasma decomposition process is applicable to any hydrocarbon fuel, from methane to heavy hydrocarbons. Similar to oxidative plasma reforming, plasma decomposition processes fall into two major categories thermal and nonthermal plasma systems. [Pg.87]

The fact that reaction (3.82) may not proceed as written at high temperatures may explain why methane oxidation is slow relative to that of other hydrocarbon fuels and why substantial concentrations of ethane are found [4] during the methane oxidation process. The processes consuming methyl radicals are apparently slow, so the methyl concentration builds up and ethane forms through simple recombination ... [Pg.114]

Owing to the great instability of the radicals formed from propane and larger molecules, reaction (3.99) is fast and effectively first-order thus, competitive reactions similar to (3.100) need not be considered. Thus, in reactions (3.94) and (3.95) the M has to be included only for ethane and, to a small degree, propane and in reaction (3.99) M is required only for ethane. Consequently, ethane is unique among all paraffin hydrocarbons in its combustion characteristics. For experimental purposes, then, ethane (like methane) should not be chosen as a typical hydrocarbon fuel. [Pg.122]

Reported flame speed results for most fuels vary somewhat with the measurement technique used. Most results, however, are internally consistent. Plotted in Fig. 4.21 are some typical flame speed results as a function of the stoichiometric mixture ratio. Detailed data, which were given in recent combustion symposia, are available in the extensive tabulations of Refs. [24-26], The flame speeds for many fuels in air have been summarized from these references and are listed in Appendix F. Since most paraffins, except methane, have approximately the same flame temperature in air, it is not surprising that their flame speeds are about the same (—45 cm/s). Methane has a somewhat lower speed (<40 cm/s). Attempts [24] have been made to correlate flame speed with hydrocarbon fuel structure and chain length, but these correlations... [Pg.187]

It is interesting to note that stratified combustible gas mixtures can exist in tunnel-like conditions. The condition in a coal mine tunnel is an excellent example. The marsh gas (methane) is lighter than air and accumulates at the ceiling. Thus a stratified air-methane mixture exists. Experiments have shown that under the conditions described the flame propagation rate is very much faster than the stoichiometric laminar flame speed. In laboratory experiments simulating the mine-like conditions the actual rates were found to be affected by the laboratory simulated tunnel length and depth. In effect, the expansion of the reaction products of these type laboratory experiments drives the flame front developed. The overall effect is similar in context to the soap bubble type flame experiments discussed in Section C5c. In the soap bubble flame experiment measurements, the ambient condition is about 300 K and the stoichiometric flame temperature of the flame products for most hydrocarbon fuels... [Pg.211]

This reaction is of some importance, as formerly in the production of blue water gas the presence of methane was entirely accounted for by the presence of hydrocarbons in the fuel However, the e q)eriments of Bone and Jerdan show that even if no hydrogen whatever were present in the fuel, methane would be formed if the temperature of the fuel be sufficient... [Pg.20]

On this basis, petroleum may have some value in the crude state but, when refined, provides fuel gas, petrochemical gas (methane, ethane, propane, and butane), fiansportation fuel (gasoline, diesel fuel, aviation fuel), solvents, lubricants, asphalt, and many other products. In addition to the hydrocarbon constituents, petroleum does contain heteroatomic (nonhydrocarbon) species, but they are in the minority compared to the number of carbon and hydrogen atoms. They do, nevertheless, impose a major influence on the behavior of petroleum and petroleum products as well as on the refining processes (Speight and Ozum, 2002). [Pg.13]

The toxic emissions with CNG, without exception, are lower than for any other hydrocarbon fuel. This is a direct result of the fact that CNG is a single hydrocarbon, 90% methane, whereas all of the other fuels are a mix of hydrocarbons. LPG is a relatively simple mix of propane, butane, and pentane compared to CNG and the complex mix that makes up the gasoline and diesel typically pnrchased at the service station. Gasoline and diesel emit compounds into the air methanol, formaldehyde, aldehydes, acrolein, benzene, toluene, xylene, etc., some of which ate not yet part of any established emission standard but certainly are not beneficial to people s health (Demiibas, 2002). [Pg.93]

Hydrogen gas is the preferred fuel for low-temperature fuel cells. The main obstacle in the use of hydrogen as energy carrier is that hydrogen is not a readily available fuel. In high-temperature fuel cells, a hydrocarbon fuel, for example, methane or gasoline, can be fed directly into the cell. To use hydrocarbons... [Pg.24]

First, we will refer to the direct use of hydrocarbon fuels in an SOFC as direct utilization rather than direct oxidation. Second, we recognize that the broadest definition of direct utilization, exclusive from mechanistic considerations, should include rather conventional use of fuel by internal reforming, with steam being cofed to the fuel cell with the hydrocarbon. Indeed, this nomenclature has been used for many years with molten-carbonate fuel cells. However, because internal reforming is essentially limited to methane and because the addition of steam with the fuel adds significant system complexity, we will focus primarily on systems and materials in which the hydrocarbons are fed to the fuel cell directly without significant amounts of water or oxygen. [Pg.607]

The performance of SOFCs with Cu—ceria—YSZ anodes has been tested with a wide variety of hydrocarbon fuels, and this has been documented elsewhere.With the exception of methane, which is known to be relatively unreactive in normal heterogeneous reactions as well, all of the hydrocarbons we examined appear to give similar performance characteristics. The fuels that were tested include /2-butane, /2-decane, toluene, and a synthetic diesel. The main difference observed between the various fuels is that some fuels tend to form tars more readily via gas-phase free-radical chemistry. Otherwise, with the exception of CH4, all hydrocarbons that were investigated showed similar power densities. This is shown in Figure 20, which displays the voltage and current densities for /2-decane, toluene, and synthetic diesel as a function of time. In this case, the hydrocarbon fuels were diluted in dry N2 to a concentration of 40 wt % hydrocarbon to prevent condensation of unreacted fuels that leave the cell. (In our studies, the active area for the fuel cell is typically 0.5 cm, and a current density of 1 A/cm would require a flow... [Pg.621]

The radiative fraction, x,., generally ranges from 0.2 to 0.4. This range reflects differences in fuel properties, with values of 0.2 for hydrocarbon fuels with one carbon atom (e.g., Q for methane) to values of 0.4 for hydrocarbons with five or more carbon atoms (Brzustowski, 1971). Fuels such as propane and butane (C3) have reported radiative fractions of 0.3. [Pg.77]


See other pages where Hydrocarbon fuels methane fuel is mentioned: [Pg.126]    [Pg.453]    [Pg.353]    [Pg.313]    [Pg.160]    [Pg.1115]    [Pg.504]    [Pg.326]    [Pg.38]    [Pg.16]    [Pg.86]    [Pg.94]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.285]    [Pg.286]    [Pg.286]    [Pg.290]    [Pg.294]    [Pg.28]    [Pg.74]    [Pg.243]    [Pg.249]    [Pg.68]    [Pg.123]    [Pg.551]    [Pg.219]    [Pg.220]    [Pg.220]    [Pg.221]    [Pg.222]    [Pg.614]    [Pg.614]   


SEARCH



Fuel methane

Hydrocarbon fuels

© 2024 chempedia.info