Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fused-silica capillary columns

We have developed the method for quantitative analysis of urinary albumin with CE. A capillary electrophoresis systems Nanophor 01 (Institute of Analytical Instmmentation, Russian Academy of Sciences, Saint-Petersburg) equipped with a UV-detector was used to determine analyte. Separation was achieved using 45 cmx30 p.m I.D. fused silica capillary column with UV-detection at 214 nm. [Pg.100]

Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23). Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23).
For routine separations, there are about a dozen useful phases for capillary columns. The best general-purpose columns are the dimethylpolysiloxane (DB-1 or equivalent) and the 5% phenyl, 95% dimethylpolysiloxane (DB-5 or equivalent). These relatively nonpolar columns are recommended because they provide adequate resolution and are less prone to bleed than the more polar phases. If a DB-1, DB-5, or equivalent capillary column does not give the necessary resolution, try a more polar phase such as DB-23, CP-Sil88, or Carbowax 20M, providing the maximum operating temperature of the column is high enough for the sample of interest. See Appendix 3 for fused silica capillary columns from various suppliers. [Pg.173]

The use of a fused silica capillary column for the GC analysis of the neutral oil extract has provided the means for improving the resolution of components in a more inert system. The sultones are determined by temperature-programmed GC over CP-Sil-5 CB (methyl silicone fluid) in a 25 m x 0.2 mm fused silica capillary column using nonadecane as internal standard. A sample split ratio of 1 100 is recommended for a 3-pl injection. [Pg.448]

Chromatography Hewlett-Packard Ultra2 (25 m x 0.33 mm) cross-linked phenyl methyl silicone fused silica capillary column. Temperature program 55° (1 min.) -I- 30°C/min. to 180°C, and 4°C/min. to 320°C. [Pg.253]

Eichelberger JW, Kerns EH, Olynyk P, et al. 1983. Precision and accuracy in the determination of organics in water by fused silica capillary column gas chromatography/mass spectrometry and packed column gas chromatography/mass spectrometry. Anal Chem 55 1471-1479. [Pg.284]

Use of 10 pm LiChrosorb RP18 column and binary eluent of methanol and aqueous 0.1 M phosphate buffer (pH 4.0) according to suitable gradient elution program in less than 20-min run time with satisfactory precision sensitivity of spectrophotometric detection optimized, achieving for all additives considered detection limits ranging from 0.1 to 3.0 mg/1, below maximum permitted levels Simultaneous separation (20 min) of 14 synthetic colors using uncoated fused silica capillary column operated at 25 kV and elution with 18% acetonitrile and 82% 0.05 M sodium deoxycholate in borate-phosphate buffer (pH 7.8), recovery of all colors better than 82%... [Pg.538]

Glycosyl-linkages were determined by GC-EIMS of the partially methylated alditol acetates. RG-II samples (2 mg) were methylated using sodium methyl sulfmyl carbanion and methyl iodide in dimethyl sulfoxide [24] followed by reduction of the uronosyl groups with lithium triethylborodeuteride (Superdeuteride , Aldrich) [23,25]. Methylated and carboxyl-reduced samples were then submitted to acid hydrolysis, NaBIlt reduction and acetylation, partially methylated alditol acetates being analysed by EIMS on two fused-silica capillary columns (DB-1 and DB-225) [20]. [Pg.70]

Early work relied on the use of packed columns, but all modern GC analyses are accomplished using capillary columns with their higher theoretical plate counts and resolution and improved sensitivity. Although a variety of analytical columns have been employed for the GC of triazine compounds, the columns most often used are fused-silica capillary columns coated with 5% phenyl-95% methylpolysiloxane. These nonpolar columns in conjunction with the appropriate temperature and pressure programming and pressure pulse spiking techniques provide excellent separation and sensitivity for the triazine compounds. Typically, columns of 30 m x 0.25-mm i.d. and 0.25-qm film thickness are used of which numerous versions are commercially available (e.g., DB-5, HP-5, SP-5, CP-Sil 8 CB, etc.). Of course, the column selected must be considered in conjunction with the overall design and goals of the particular study. [Pg.440]

Oxyfluorfen column, fused-silica capillary column coated with cross-linked methyl silicone (25 m x 0.3-mm i.d., 0.52- am film thickness) temperature, column 200 °C (1 min), 10°Cmin to 250 °C (5 min), inlet and detector 250 and 300 °C, respectively gas flow rates, N2 carrier gas 30mLmin , N2 makeup gas 30mLmin H2 3.5mLmin" air llOmLmin injection volume, 2 p.L. ... [Pg.457]

Fused-silica capillary column, HP-SMS, 30 m x 0.25-mm i.d., 0.25- am film thickness, (5% phenyl)-methylpolysiloxane... [Pg.543]

Under these chromatographic conditions, the CS2 retention time is about 3 min on a fused-silica capillary column and about 2 min on a Teflon Chromosil 330 packed column. [Pg.1097]

The silica gel column eluates (Module Cl or C2) are injected, if necessary with the addition of an internal standard, into a gas chromatograph followed by ECD or NPD. The determinations can be performed with different gas chromatographs and fused-silica capillary columns. [Pg.1117]

Hewlett-Packard Model 6890 Fused-silica capillary column, HP 35MS, length 30 m, 0.32-mm i.d., film thickness 0.25-p.m (HP No. 19091G-633)... [Pg.1119]

Chromatographic columns (glass with stopcock and solvent reservoir, 10-mm i.d.) Fused-silica capillary column, DB-1701, 60 m x 0.32-mm i.d., O.lS-qm film thickness (14% cyanopropylphenyl)methylpolysiloxane Varian 3400 gas chromatograph equipped with a temperature-programmed SPI injector, a Varian 8100 autosampler, and a Varian Saturn II lontrap mass spectrometer Centrifuge vials, 10- and 250-mL Evaporation flasks, 100- and 250-mL Separatory funnel, 250-mL... [Pg.1200]

Hewlett-Packard model 5890A Fused-silica capillary column, Rtx-200, 0.53-mm i.d., 15-m length, film thickness 1.5- xm (for imibenconazole)... [Pg.1218]

Figure 1.17 Separation of large ring polycyclic aroaatic hydrocarbons extracted from carbon black on a 1.8 x 0.2 n I.D. fused silica capillary column packed with 3 micrometer spherical octadecylsllanized silica gel eluted with a stepwise solvent gradient at a flow rate of 1.1 mlcroliters/min with an inlet pressure of about 360 atmospheres. Under isocratic conditions this column yielded ca. 225,000 theoretical plates. (Reproduced with permission from ref. 238. Copyright Friedr. Vieweg t Sohn). Figure 1.17 Separation of large ring polycyclic aroaatic hydrocarbons extracted from carbon black on a 1.8 x 0.2 n I.D. fused silica capillary column packed with 3 micrometer spherical octadecylsllanized silica gel eluted with a stepwise solvent gradient at a flow rate of 1.1 mlcroliters/min with an inlet pressure of about 360 atmospheres. Under isocratic conditions this column yielded ca. 225,000 theoretical plates. (Reproduced with permission from ref. 238. Copyright Friedr. Vieweg t Sohn).
Extracolumn dispersion is a major problem for the packed fused silica capillary columns with internal diameters less than 0.35 mm. Peak standeunl deviations will be in the submicroliter range and extensive equipment modification is required for operation under optimum conditions. A reasonable compromise is to esploy injection voluMs of a few hundred nanoliters or less with detector volumes of a similar or preferably smaller size. This demands considerable ingenuity on behalf of the analyst since, as... [Pg.561]


See other pages where Fused-silica capillary columns is mentioned: [Pg.4]    [Pg.220]    [Pg.221]    [Pg.309]    [Pg.258]    [Pg.81]    [Pg.965]    [Pg.545]    [Pg.545]    [Pg.727]    [Pg.827]    [Pg.1201]    [Pg.1205]    [Pg.1275]    [Pg.1279]    [Pg.40]    [Pg.43]    [Pg.78]    [Pg.123]    [Pg.155]    [Pg.512]    [Pg.603]    [Pg.669]   
See also in sourсe #XX -- [ Pg.444 ]

See also in sourсe #XX -- [ Pg.29 ]

See also in sourсe #XX -- [ Pg.752 ]

See also in sourсe #XX -- [ Pg.11 , Pg.252 ]




SEARCH



Aluminum-clad fused-silica capillary columns

Capacity fused-silica capillary columns

Capillary column columns)

Capillary column technology fused-silica

Capillary columns

Coating fused-silica capillary columns

Deactivation fused-silica capillary columns

Extrusion of a Fused-Silica Capillary Column

Fused silica

Fused silica columns

Fused-silica capillary

Fused-silica capillary columns characteristics

Fused-silica capillary columns polyimide-clad

Fused-silica capillary columns popularity

Fused-silica capillary columns preparation

Fused-silica capillary columns stainless steel

Fused-silica capillary columns synthetic

Fused-silica capillary columns tubing

Fused-silica-lined stainless-steel capillary columns

Inert-fused silica capillary columns

Packed fused silica capillary columns

Preparation of Fused-Silica Capillary Columns

Retention time fused-silica capillary columns

Selectivity fused-silica capillary columns

Silica capillary columns

Silica columns

Stationary phase fused-silica capillary columns

Temperature fused-silica capillary columns

© 2024 chempedia.info