Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel cells importance

For users of fuel cells, important performance figures are the values of power density referred to unit mass M = P/M (the units in watt per kilogram) or unit volume... [Pg.138]

Fuel cells involve use of gaseous reactants to produce electricity - most often H2-O2 within a porous electrode. Secondary cells are rechargeable. The most important systems are... [Pg.53]

Another important potential appHcation for fuel cells is in transportation (qv). Buses and cars powered by fuel cells or fuel cell—battery hybrids are being developed in North America and in Europe to meet 2ero-emission legislation introduced in California. The most promising type of fuel cell for this appHcation is the SPEC, which uses platinum-on-carbon electrodes attached to a soHd polymeric electrolyte. [Pg.173]

Electrochemical systems convert chemical and electrical energy through charge-transfer reactions. These reactions occur at the interface between two phases. Consequendy, an electrochemical ceU contains multiple phases, and surface phenomena are important. Electrochemical processes are sometimes divided into two categories electrolytic, where energy is supplied to the system, eg, the electrolysis of water and the production of aluminum and galvanic, where electrical energy is obtained from the system, eg, batteries (qv) and fuel cells (qv). [Pg.62]

By the time the next overview of electrical properties of polymers was published (Blythe 1979), besides a detailed treatment of dielectric properties it included a chapter on conduction, both ionic and electronic. To take ionic conduction first, ion-exchange membranes as separation tools for electrolytes go back a long way historically, to the beginning of the twentieth century a polymeric membrane semipermeable to ions was first used in 1950 for the desalination of water (Jusa and McRae 1950). This kind of membrane is surveyed in detail by Strathmann (1994). Much more recently, highly developed polymeric membranes began to be used as electrolytes for experimental rechargeable batteries and, with particular success, for fuel cells. This important use is further discussed in Chapter 11. [Pg.333]

Selected physical properties of oxygen are included in Table 9.24. It is a colourless, odourless and tasteless gas which is essential for life and considered to be non-toxic at atmospheric pressure. It is somewhat soluble in water and is slightly heavier than air. Important uses are in the steel and glass industries, oxyacetylene welding, as a chemical intermediate, waste-water treatment, fuel cells, underwater operations and medical applications. [Pg.301]

It was quite recently reported that La can be electrodeposited from chloroaluminate ionic liquids [25]. Whereas only AlLa alloys can be obtained from the pure liquid, the addition of excess LiCl and small quantities of thionyl chloride (SOCI2) to a LaCl3-sat-urated melt allows the deposition of elemental La, but the electrodissolution seems to be somewhat Idnetically hindered. This result could perhaps be interesting for coating purposes, as elemental La can normally only be deposited in high-temperature molten salts, which require much more difficult experimental or technical conditions. Furthermore, La and Ce electrodeposition would be important, as their oxides have interesting catalytic activity as, for instance, oxidation catalysts. A controlled deposition of thin metal layers followed by selective oxidation could perhaps produce cat-alytically active thin layers interesting for fuel cells or waste gas treatment. [Pg.300]

A complete fuel cell system, even when operating on pure hydrogen, is quite complex because, like most engines, a fuel cell stack cannot produce power without functioning air, fuel, thermal, and electrical systems. Figure 3 illustrates the major elements of a complete system. It is important to understand that the sub-systems are not only critical from an operational standpoint, but also have a major effect on system economics since they account for the majority of the fuel cell system cost. [Pg.525]

In summary, fuel cell development is being accelerated both by the wide variety of applications and by the search lor cleaner and more efficient utilization of primary energy and, ultimately, renewable energy. Because these forces for change are unlikely to disappear, It is quite likely that fuel cells will emerge as one of the most important and pewasive power sources for the future. [Pg.531]

Nafion is a good membrane for a fuel cell working with H2 but does not work above 80°C or with methanol. An important work on sulfonated aromatic and heterocyclic systems is now involving many teams in North America, Europe,... [Pg.273]

The concept of a promoter can also be extended to the case of substances which enhance the performance of an electrocatalyst by accelerating the rate of an electrocatalytic reaction. This can be quite important for the performance, e.g., of low temperature (polymer electrolyte membrane, PEM) fuel cells where poisoning of the anodic Pt electrocatalyst (reaction 1.7) by trace amounts of strongly adsorbed CO poses a serious problem. Such a promoter which when added to the Pt electrocatalyst would accelerate the desired reaction (1.5 or 1.7) could be termed an electrocatalytic promoter, or electropromoter, but this concept will not be dealt with in the present book, where the term promoter will always be used for substances which enhance the performance of a catalyst. [Pg.10]

Fuel cells such as the one shown on Fig. 3.4a convert H2 to H20 and produce electrical power with no intermediate combustion cycle. Thus their thermodynamic efficiency compares favorably with thermal power generation which is limited by Carnot-type constraints. One important advantage of solid electrolyte fuel cells is that, due to their high operating temperature (typically 700° to 1100°C), they offer the possibility of "internal reforming" which permits the use of fuels such as methane without a separate external reformer.33 36... [Pg.98]

The extent to which anode polarization affects the catalytic properties of the Ni surface for the methane-steam reforming reaction via NEMCA is of considerable practical interest. In a recent investigation62 a 70 wt% Ni-YSZ cermet was used at temperatures 800° to 900°C with low steam to methane ratios, i.e., 0.2 to 0.35. At 900°C the anode characteristics were i<>=0.2 mA/cm2, Oa=2 and ac=1.5. Under these conditions spontaneously generated currents were of the order of 60 mA/cm2 and catalyst overpotentials were as high as 250 mV. It was found that the rate of CH4 consumption due to the reforming reaction increases with increasing catalyst potential, i.e., the reaction exhibits overall electrophobic NEMCA behaviour with a 0.13. Measured A and p values were of the order of 12 and 2 respectively.62 These results show that NEMCA can play an important role in anode performance even when the anode-solid electrolyte interface is non-polarizable (high Io values) as is the case in fuel cell applications. [Pg.410]

Stoichiometry has important practical applications, such as predicting how much product can be formed in a reaction. For example, in the space shuttle fuel cell, oxygen reacts with hydrogen to produce water, which is used for life support (Fig. L.l). Let s look at the calculation space shuttle engineers would have to do to find out how much water is formed when 0.25 mol 02 reacts with hydrogen gas. [Pg.109]

Electrochemistry is the basis of many important and modem applications and scientific developments such as nanoscale machining (fabrication of miniature devices with three dimensional control in the nanometer scale), electrochemistry at the atomic scale, scanning tunneling microscopy, transformation of energy in biological cells, selective electrodes for the determination of ions, and new kinds of electrochemical cells, batteries and fuel cells. [Pg.399]

The first reported electroorganic synthesis of a sizeable amount of material at a modified electrode, in 1982, was the reduction of 1,2-dihaloalkanes at p-nitrostyrene coated platinum electrodes to give alkenes. The preparation of stilbene was conducted on a 20 pmol scale with reported turnover numbers approaching 1 x 10. The idea of mediated electrochemistry has more frequently been pursued for inorganic electrode reactions, notably the reduction of oxygen which is of eminent importance for fuel cell cathodes Almost 20 contributions on oxygen reduction at modified... [Pg.66]

There is exciting new engineering and science in the old field of fuel cells. Even more important, the payoff of this research may be a truly stunning advance in our use of energy. [Pg.174]

Another important task will be to provide society with professional guidance and advice about the feasibility and merit of proposed technological solutions. It is our duty to point out when proposed processes create unrealistic expectations. An example of such guidance is the recent article by Shinnar [6] that motivated a discussion of the feasibility of use of hydrogen fuel cells in automobiles. [Pg.4]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

The dynamic behavior of fuel cells is of importance to insure the stable operation of the fuel cells under various operating conditions. Among a few different fuel cell types, the direct methanol fuel cell (DMFC) has been known to have advantages especially for portable... [Pg.593]

A major problem with the new sustainable energy sources is their reliability. Inherently they will produce electricity as the wind blows and the sun shines. The need for power is not constant either, with peak demands during the day. Hence, ways are needed to store energy that enable release on demand. Synthetic fuels and methanol are candidates, but the most important will be hydrogen. It can be produced conveniently from water and electricity with a reasonably high efficiency of 70 %. Hydrogen is the ideal fuel for fuel cells. [Pg.341]


See other pages where Fuel cells importance is mentioned: [Pg.302]    [Pg.302]    [Pg.215]    [Pg.577]    [Pg.581]    [Pg.548]    [Pg.227]    [Pg.69]    [Pg.2411]    [Pg.246]    [Pg.276]    [Pg.450]    [Pg.295]    [Pg.523]    [Pg.639]    [Pg.643]    [Pg.802]    [Pg.152]    [Pg.938]    [Pg.295]    [Pg.401]    [Pg.108]    [Pg.203]    [Pg.4]    [Pg.613]    [Pg.632]    [Pg.637]    [Pg.931]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Importance of PAFCs for Fuel Cell Development

Polymer electrolyte fuel cells importance

© 2024 chempedia.info