Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalytic reaction

The energy for the fission of the covalent bond in organic contaminants is normally supplied thermally using thermodynamically accessible chemical or biochemical reactions, or by the introduction of catalysts to lower the activation energy of the reactions. There has been interest, however, in using electrical energy in a number of forms to carry out these reactions. A selection of processes for the destruction of contaminant is noted with some illustrative examples. [Pg.37]

The simplest applications involve direct anodic oxidation in aqueous media. [Pg.37]

Electrohydraulic discharge plasmas have been used in different configurations. [Pg.37]

Electrolytic reduction has been carried out under several conditions. [Pg.38]

Electrochemical simulations of the concentration and scan-rate dependence of the voltammetry potentially provide the composition of the intermediates formed during the reaction cycle together with estimates of the rate and equilibrium constants. As shown in the preceding section spectroscopic information can greatly assist the elucidation of the molecular details of these reactions, however, reliable deduction of the structure is greatly enhanced by the incorporation of structural and computational information (Section 1.6). The rapid advance in computer power and implementation of density-functional theory allows a more quantitative approach for evaluation of proposed structures based on spectroscopic information and estimation of the relative energies of the proposed spe-cies. The recent computational study of the electrocatalytic reaction cycle proposed for illustrates the opportunities presented by the approach. [Pg.15]


The experimental setup is depicted schematically in Figure 1.2. Upon varying the potential of the catalyst/working electrode the cell current, I, is also varied. The latter is related to the electrocatalytic (net-charge transfer) reaction rate re via re=I/nF, as well known from Faraday s law. The electrocatalytic reactions taking place at the catalyst/solid electrolyte/gas three-phase-boundaries (tpb), are ... [Pg.3]

Wagner was first to propose the use of solid electrolytes to measure in situ the thermodynamic activity of oxygen on metal catalysts.17 This led to the technique of solid electrolyte potentiometry.18 Huggins, Mason and Giir were the first to use solid electrolyte cells to carry out electrocatalytic reactions such as NO decomposition.19,20 The use of solid electrolyte cells for chemical cogeneration , that is, for the simultaneous production of electrical power and industrial chemicals, was first demonstrated in 1980.21 The first non-Faradaic enhancement in heterogeneous catalysis was reported in 1981 for the case of ethylene epoxidation on Ag electrodes,2 3 but it was only... [Pg.7]

The concept of a promoter can also be extended to the case of substances which enhance the performance of an electrocatalyst by accelerating the rate of an electrocatalytic reaction. This can be quite important for the performance, e.g., of low temperature (polymer electrolyte membrane, PEM) fuel cells where poisoning of the anodic Pt electrocatalyst (reaction 1.7) by trace amounts of strongly adsorbed CO poses a serious problem. Such a promoter which when added to the Pt electrocatalyst would accelerate the desired reaction (1.5 or 1.7) could be termed an electrocatalytic promoter, or electropromoter, but this concept will not be dealt with in the present book, where the term promoter will always be used for substances which enhance the performance of a catalyst. [Pg.10]

Thus indeed CH4 oxidation in a SOFC with a Ni/YSZ anode results into partial oxidation and the production of synthesis gas, instead of generation of C02 and H20 as originally believed. The latter happens only at near-complete CH4 conversion. However the partial oxidation overall reaction (3.12) is not the result of a partial oxidation electrocatalyst but rather the result of the catalytic reactions (3.9) to (3.11) coupled with the electrocatalytic reaction (3.8). From a thermodynamic viewpoint the partial oxidation reaction (3.12) is at least as attractive as complete oxidation to C02 and H20. [Pg.98]

Table 3.1. Electrocatalytic reactions investigated in doped Zr02 solid electrolyte fuel cells for chemical cogeneration ... Table 3.1. Electrocatalytic reactions investigated in doped Zr02 solid electrolyte fuel cells for chemical cogeneration ...
With the exception of H20 electrolysis51,59 it is likely that, for all other electrocatalytic reactions listed on Table 3.2, catalytic phenomena taking place on the gas-exposed electrode surface or also on the solid electrolyte surface, had a certain role in the observed kinetic behaviour. However, this role cannot be quantified, since the measured increase in reaction rate was, similarly to the case of the reactions listed on Table 3.1, limited by Faraday s law, i.e. ... [Pg.100]

C.G. Vayenas, Catalytic and Electrocatalytic Reactions in Solid Oxide Fuel Cells, Solid State Ionics 28-30, 1521-1539 (1988). [Pg.107]

Electrocatalytic reactions, such as the transformation of O2 from the zirconia lattice to oxygen adsorbed on the film at or near the three-phase-boundaries, which we denote by 0(a), have been found to take place primarily at these three phase boundaries.5 8 This electrocatalytic reaction will be denoted by ... [Pg.114]

In the presence of oxidizable reactants over the catalyst surface, other electrocatalytic reactions may also take place in parallel with reaction (4.1) at the tpb. Thus in presence of high CO concentrations, direct reaction of CO with O2 can also take place ... [Pg.121]

When other types of solid electrolyte are used, such as the Na+ conducting JT -AljCb, then the dominant electrocatalytic reaction at the tpb is ... [Pg.121]

Strictly speaking I0 is a measure of the electrocatalytic activity of the tpb for a given electrocatalytic reaction. It expresses the rates of the forward (anodic) and reverse (cathodic) electrocatalytic reaction under consideration, e.g. reaction (4.1), when there is no net current crossing the metal-solid electrolyte or, equivalently, the tpb. In this case the rates of the forward and the reverse reactions are obviously equal. It has been recently shown that, in most cases, as one would intuitively expect, I0 is proportional to the length, tpb, of the tpb.8... [Pg.122]

We start by considering a schematic representation of a porous metal film deposited on a solid electrolyte, e.g., on Y203-stabilized-Zr02 (Fig. 5.17). The catalyst surface is divided in two distinct parts One part, with a surface area AE is in contact with the electrolyte. The other with a surface area Aq is not in contact with the electrolyte. It constitutes the gas-exposed, i.e., catalytically active film surface area. Catalytic reactions take place on this surface only. In the subsequent discussion we will use the subscripts E (for electrolyte) and G (for gas), respectively, to denote these two distinct parts of the catalyst film surface. Regions E and G are separated by the three-phase-boundaries (tpb) where electrocatalytic reactions take place. Since, as previously discussed, electrocatalytic reactions can also take place to, usually,a minor extent on region E, one may consider the tpb to be part of region E as well. It will become apparent below that the essence of NEMCA is the following One uses electrochemistry (i.e. a slow electrocatalytic reaction) to alter the electronic properties of the metal-solid electrolyte interface E. [Pg.206]

This causes a 380% increase in rn2co and a 413% increase in rCo- The corresponding enhancement factors are AH2co=-17.5, ACo=-3. There is also a 190% increase in r< H4 with an enhancement factor ACh4= 0.3, but this rate increase has been shown56 to be Faradaic and due to the electrocatalytic reaction ... [Pg.404]

It has been known since 19911 that p"-Al203, a Na+ conductor,2,3 can also induce pronounced electrochemical promotion (NEMCA) behaviour on metal surfaces. Here the dominant electrocatalytic reaction is ... [Pg.435]

BEWICK AND KALAJI Molecular Structure in Electrocatalytic Reactions... [Pg.551]

The electrocatalytic oxidation of methanol has been thoroughly investigated during the past three decades (see reviews in Refs. 21-27), particularly in regard to the possible development of DMFCs. The oxidation of methanol, the electrocatalytic reaction, consists of several steps, which also include adsorbed species. The determination of the mechanism of this reaction needs two kinds of information (1) the electrode kinetics of the formation of partially oxidized and completely oxidized products (main and side products) and (2) the nature and the distribution of intermediates adsorbed at the electrode surface. [Pg.75]

Since oxidation of methanol is an electrocatalytic reaction with different adsorption steps, interactions of the adsorbed species with the metallic surface are important. Using platinum single-crystal electrodes, it has been proven that the electrooxidation of methanol is a surface-sensitive reaction. The initial activity of the Pt(llO) plane is much higher than that of the other low-index planes, but the poisoning phenomenon is so rapid that it causes a fast decrease in the current densities. The... [Pg.83]

Sullivan, B. P, K. Krist, and H. E. Guard, Eds., Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Elsevier, Amsterdam, 1993. [Pg.296]

In this section we treat some electrochemical reactions at interfaces with solid electrolytes that have been chosen for both their technological relevance and their scientific relevance. The understanding of the pecularities of these reactions is needed for the technological development of fuel cells and other devices. Investigation of hydrogen or oxygen evolution reactions in some systems is very important to understand deeply complex electrocatalytic reactions, on the one hand, and to develop promising electrocatalysts, on the other. [Pg.438]

Electrocatalytic reactions have much in common with ordinary (chemical) heterogeneous catalytic reactions, but electrocatalysis has certain characteristic special features ... [Pg.522]

To illustrate the influence exerted by the energy of adsorption of an intermediate on the rate of an electrocatalytic reaction, consider a very simple two-step reaction of the type A —> X —> B where X, the intermediate, is reversibly adsorbed on the electrode (with a degree of surface coverage 9x). For the sake of simplicity, the electrode surface will be assumed to be homogeneous (i.e., conditions of Langmuir adsorption hold), while the system lacks adsorbed species other than X. The rate, of the adsorption step (the first step) is then proportional to the bulk concentration of the starting material, c, and to the free surface part (1 - 9x) (the part not taken up by species X), while the rate of further transformation of intermediate X, which is tied to its desorption, will be proportional to the surface fraction, 9x, taken up by it ... [Pg.523]

Figure 4.4 Schematic diagram of the free energy calculated from (4.4), Fftee. versus potential cf> for the generic electrocatalytic reaction A —> B. Points indicated hy squares and circles are for specific external charges (various q) for the systems A and B, respectively. Solid and dashed lines indicate the best-fit curves for the free energy versus potential relationship for systems A and B, respectively. Figure 4.4 Schematic diagram of the free energy calculated from (4.4), Fftee. versus potential cf> for the generic electrocatalytic reaction A —> B. Points indicated hy squares and circles are for specific external charges (various q) for the systems A and B, respectively. Solid and dashed lines indicate the best-fit curves for the free energy versus potential relationship for systems A and B, respectively.
The presence of solution at a metal surface, as has been discussed, can significantly influence the pathways and energetics of a variety of catalytic reactions, especially electrocatalytic reactions that have the additional complexity of electrode potential. We describe here how the presence of a solution and an electrochemical potential influence the reaction pathways and the reaction mechanism for methanol dehydrogenation over ideal single-crystal surfaces. [Pg.114]

Regarding the electrode/electrolyte interface, it is important to distinguish between two types of electrochemical systems thermodynamically closed (and in equilibrium) and open systems. While the former can be understood by knowing the equilibrium atomic structure of the interface and the electrochemical potentials of all components, open systems require more information, since the electrochemical potentials within the interface are not necessarily constant. Variations could be caused by electrocatalytic reactions locally changing the concentration of the various species. In this chapter, we will focus on the former situation, i.e., interfaces in equilibrium with a bulk electrode and a multicomponent bulk electrolyte, which are both influenced by temperature and pressures/activities, and constrained by a finite voltage between electrode and electrolyte. [Pg.129]

As described above, the electrolyte usually contains anions and cations, which are partially or fully solvated, water molecules and various species being involved in electrocatalytic reactions. The excess charge on the electrode surface is compensated by an accumulation of corresponding electrolyte counter-ions, leading to overall charge neutrality. [Pg.136]

Poisoning of platinum fuel cell catalysts by CO is undoubtedly one of the most severe problems in fuel cell anode catalysis. As shown in Fig. 6.1, CO is a strongly bonded intermediate in methanol (and ethanol) oxidation. It is also a side product in the reformation of hydrocarbons to hydrogen and carbon dioxide, and as such blocks platinum sites for hydrogen oxidation. Not surprisingly, CO electrooxidation is one of the most intensively smdied electrocatalytic reactions, and there is a continued search for CO-tolerant anode materials that are able to either bind CO weakly but still oxidize hydrogen, or that oxidize CO at significantly reduced overpotential. [Pg.161]

Jarvi TD, Stuve EM. 1998. Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces. In Lipkowski J, Ross PN, eds. Electrocatalysis. New York Wiley-VCH. pp. 75-153. [Pg.242]


See other pages where Electrocatalytic reaction is mentioned: [Pg.94]    [Pg.97]    [Pg.100]    [Pg.115]    [Pg.116]    [Pg.260]    [Pg.406]    [Pg.553]    [Pg.37]    [Pg.533]    [Pg.699]    [Pg.94]    [Pg.102]    [Pg.103]    [Pg.175]    [Pg.281]    [Pg.344]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.26 ]

See also in sourсe #XX -- [ Pg.33 , Pg.35 , Pg.191 ]

See also in sourсe #XX -- [ Pg.84 ]




SEARCH



© 2024 chempedia.info