Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fermentative production fermentation

Fermented Products. Fermented meat products such as semidried and dried sausages are generally recognized as safe, if critical points during processing are controlled properly. Some of the sausage processors use a small amount of fermented product as the starter for a new batch of product. [Pg.33]

Manufactured by the liquid-phase oxidation of ethanal at 60 C by oxygen or air under pressure in the presence of manganese(ii) ethanoate, the latter preventing the formation of perelhanoic acid. Another important route is the liquid-phase oxidation of butane by air at 50 atm. and 150-250 C in the presence of a metal ethanoate. Some ethanoic acid is produced by the catalytic oxidation of ethanol. Fermentation processes are used only for the production of vinegar. [Pg.164]

Streptomycin B (mannosidostreptomycin) has a mannose molecule attached to the methylglucosamine group, and is the first antibacterial product made, but is enzymatically converted to streptomycin later in the fermentation. [Pg.373]

It is obtained as a by-product in the fermentation of sugars to give alcohols ... [Pg.180]

Apart from using an environmentally friendly solvent, it is also important to clean up the chemical reactions themselves by reducing the number and amount of side-products formed. For this purpose catalysts are a versatile tool. Catalysts have been used for thousands of years in processes such as fermentation and their importance has grown ever since. In synthetic oiganic chemistry, catalysts have found wide applications. In the majority of these catalytic processes, organic solvents are used, but also here the use of water is becoming increasingly popular . [Pg.2]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

PhCHa benzylpenicillin = penicillin G (usual fermentation product)... [Pg.311]

Marecek and colleagues developed a new electrochemical method for the rapid quantitative analysis of the antibiotic monensin in the fermentation vats used during its production. The standard method for the analysis, which is based on a test for microbiological activity, is both difficult and time-consuming. As part of the study, samples taken at different times from a fermentation production vat were analyzed for the concentration of monensin using both the electrochemical and microbiological procedures. The results, in parts per thousand (ppt), are reported in the following table. [Pg.92]

Recovery nd Purifica.tion. The production of EH Lilly s human insulin requires 31 principal processing steps of which 27 are associated with product recovery and purification (13). The production process for human insulin, based on a fermentation which yields proinsulin, provides an instmctive case study on the range of unit operations which must be considered in the recovery and purification of a recombinant product from a bacterial fermentation. Whereas the exact sequence has not been pubUshed, the principle steps in the purification scheme are outlined in Figure la. [Pg.43]

The separation of cells from the culture media or fermentation broth is the first step in a bioproduct recovery sequence. Whereas centrifugation is common for recombinant bacterial cells (see Centrifugal separation), the final removal of CHO cells utilizes sterile-filtration techniques. Safety concerns with respect to contamination of the product with CHO cells were addressed by confirming the absence of cells in the product, and their relative noninfectivity with respect to immune competent rodents injected with a large number of CHO cells. [Pg.45]

With the proper ratio of nutrients and oxygen feed, a water-soluble polymer is produced and accompanied by growth in the microorganism population. Both contribute to the viscosity of the medium and this limits the production process. Fermentation processes require more strenuous mixing and control conditions. [Pg.314]

Com as com flakes, sweet com, com as various types of flour and meal, popcorn, other snacks foods such as chips, and com juice as sweeteners, com used in fermentation for beer and in the production of alcohol, and corncobs and stalks used as carriers for various chemicals and medications, as fiber sources, and for the improvement of soil condition by plowing under stalks, are some of the uses for this versatile crop. See Ref. 75 for more information on corn. [Pg.360]

Biochemistry resulted from the early elucidation of the pathway of enzymatic conversion of glucose to ethanol by yeasts and its relation to carbohydrate metaboHsm in animals. The word enzyme means "in yeast," and the earfler word ferment has an obvious connection. Partly because of the importance of wine and related products and partly because yeasts are relatively easily studied, yeasts and fermentation were important in early scientific development and stiU figure widely in studies of biochemical mechanisms, genetic control, cell characteristics, etc. Fermentation yeast was the first eukaryote to have its genome elucidated. [Pg.366]

Fig. 1. An amplified outline scheme of the making of various wiaes, alternative products, by-products, and associated wastes (23). Ovals = raw materials, sources rectangles = wines hexagon = alternative products (decreasing wine yield) diamond = wastes. To avoid some complexities, eg, all the wine vinegar and all carbonic maceration are indicated as red. This is usual, but not necessarily tme. Similarly, malolactic fermentation is desired in some white wines. FW = finished wine and always involves clarification and stabilization, as in 8, 11, 12, 13, 14, 15, 33, 34, followed by 39, 41, 42. It may or may not include maturation (38) or botde age (40), as indicated for usual styles. Stillage and lees may be treated to recover potassium bitartrate as a by-product. Pomace may also yield red pigment, seed oil, seed tannin, and wine spidts as by-products. Sweet wines are the result of either arresting fermentation at an incomplete stage (by fortification, refrigeration, or other means of yeast inactivation) or addition of juice or concentrate. Fig. 1. An amplified outline scheme of the making of various wiaes, alternative products, by-products, and associated wastes (23). Ovals = raw materials, sources rectangles = wines hexagon = alternative products (decreasing wine yield) diamond = wastes. To avoid some complexities, eg, all the wine vinegar and all carbonic maceration are indicated as red. This is usual, but not necessarily tme. Similarly, malolactic fermentation is desired in some white wines. FW = finished wine and always involves clarification and stabilization, as in 8, 11, 12, 13, 14, 15, 33, 34, followed by 39, 41, 42. It may or may not include maturation (38) or botde age (40), as indicated for usual styles. Stillage and lees may be treated to recover potassium bitartrate as a by-product. Pomace may also yield red pigment, seed oil, seed tannin, and wine spidts as by-products. Sweet wines are the result of either arresting fermentation at an incomplete stage (by fortification, refrigeration, or other means of yeast inactivation) or addition of juice or concentrate.
The fermentative fixing of CO2 and water to acetic acid by a species of acetobacterium has been patented acetyl coen2yme A is the primary reduction product (62). Different species of clostridia have also been used. Pseudomonads (63) have been patented for the fermentation of certain compounds and their derivatives, eg, methyl formate. These methods have been reviewed (64). The manufacture of acetic acid from CO2 and its dewatering and refining to glacial acid has been discussed (65,66). [Pg.69]

The fermentation of / -paraffins in the C q to range for protein production has provided a new oudet for these hydrocarbons (see Foods, nonconventional). Because it operates in Hquid phase, the UOP Molex process can readily accomplish the separation of / -paraffins from such a wide boiling feedstock. [Pg.300]

Citric Acid Separation. Citric acid [77-92-9] and other organic acids can be recovered from fermentation broths usiag the UOP Sorbex technology (90—92). The conventional means of recovering citric acid is by a lime and sulfuric acid process ia which the citric acid is first precipitated as a calcium salt and then reacidulated with sulfuric acid. However, this process generates significant by-products and thus can become iaefficient. [Pg.301]

Two-Phase Aqueous Extraction. Liquid—Hquid extraction usually involves an aqueous phase and an organic phase, but systems having two or more aqueous phases can also be formed from solutions of mutually incompatible polymers such as poly(ethylene glycol) (PEG) or dextran. A system having as many as 18 aqueous phases in equiHbrium has been demonstrated (93). Two-phase aqueous extraction, particularly useful in purifying biological species such as proteins (qv) and enzymes, can also be carried out in combination with fermentation (qv) so that the fermentation product is extracted as it is formed (94). [Pg.70]

Biopolymer Extraction. Research interests involving new techniques for separation of biochemicals from fermentation broth and cell culture media have increased as biotechnology has grown. Most separation methods are limited to small-scale appHcations but recendy solvent extraction has been studied as a potential technique for continuous and large-scale production and the use of two-phase aqueous systems has received increasing attention (259). A range of enzymes have favorable partition properties in a system based on a PGE—dextran—salt solution (97) ... [Pg.80]

Distilleries produce distillers dried solubles and grains, 26—35% CP, as the by-products of Hquor and wine (qv) production. Brewers grains, 26—29% CP, are by-products of beer (qv) produced from barley fermentation (see Beverage spirits, distilled). [Pg.156]


See other pages where Fermentative production fermentation is mentioned: [Pg.354]    [Pg.164]    [Pg.173]    [Pg.191]    [Pg.192]    [Pg.276]    [Pg.218]    [Pg.814]    [Pg.396]    [Pg.396]    [Pg.1059]    [Pg.43]    [Pg.44]    [Pg.46]    [Pg.57]    [Pg.315]    [Pg.363]    [Pg.373]    [Pg.373]    [Pg.374]    [Pg.374]    [Pg.375]    [Pg.48]    [Pg.66]    [Pg.69]    [Pg.94]    [Pg.135]    [Pg.336]    [Pg.562]    [Pg.155]    [Pg.155]    [Pg.155]    [Pg.157]   


SEARCH



5 - , fermentation production

Fermentation productivity

Fermentation products

Fermentative production

Fermented products

© 2024 chempedia.info