Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent environmentally friendly

The supercritical fluid carbon dioxide, C02, is of particular interest This compound has a mild (31°C) critical temperature (Table 1) it is nonflammable, nontoxic, and, especially when used to replace freons and certain organic solvents, environmentally friendly. Moreover, it can be obtained from existing industrial processes without further contribution to the greenhouse effect (see Air pollution). Carbon dioxide is fairly miscible with a variety of organic solvents, and is readily recovered after processing owing to its high volatility. It is a small linear molecule and thus diffuses more quickly than... [Pg.219]

Apart from using an environmentally friendly solvent, it is also important to clean up the chemical reactions themselves by reducing the number and amount of side-products formed. For this purpose catalysts are a versatile tool. Catalysts have been used for thousands of years in processes such as fermentation and their importance has grown ever since. In synthetic oiganic chemistry, catalysts have found wide applications. In the majority of these catalytic processes, organic solvents are used, but also here the use of water is becoming increasingly popular . [Pg.2]

Transesterification. There has been renewed interest in the transesterification process for preparation of polycarbonate because of the desire to transition technology to environmentally friendly processes. The transesterification process utilizes no solvent during polymerization, producing neat polymer direcdy and thus chlorinated solvents may be entirely eliminated. General Electric operates a polycarbonate plant in Chiba, Japan which produces BPA polycarbonate via this melt process. [Pg.283]

The two fluids most often studied in supercritical fluid technology, carbon dioxide and water, are the two least expensive of all solvents. Carbon dioxide is nontoxic, nonflammable, and has a near-ambient critical temperature of 31.1°C. CO9 is an environmentally friendly substitute for organic solvents including chlorocarbons and chloroflu-orocarbons. Supercritical water (T = 374°C) is of interest as a substitute for organic solvents to minimize waste in extraction and reaction processes. Additionally, it is used for hydrothermal oxidation of hazardous organic wastes (also called supercritical water oxidation) and hydrothermal synthesis. [Pg.2000]

A solvent free, fast and environmentally friendly near infrared-based methodology was developed for the determination and quality control of 11 pesticides in commercially available formulations. This methodology was based on the direct measurement of the diffuse reflectance spectra of solid samples inside glass vials and a multivariate calibration model to determine the active principle concentration in agrochemicals. The proposed PLS model was made using 11 known commercial and 22 doped samples (11 under and 11 over dosed) for calibration and 22 different formulations as the validation set. For Buprofezin, Chlorsulfuron, Cyromazine, Daminozide, Diuron and Iprodione determination, the information in the spectral range between 1618 and 2630 nm of the reflectance spectra was employed. On the other hand, for Bensulfuron, Fenoxycarb, Metalaxyl, Procymidone and Tricyclazole determination, the first order derivative spectra in the range between 1618 and 2630 nm was used. In both cases, a linear remove correction was applied. Mean accuracy errors between 0.5 and 3.1% were obtained for the validation set. [Pg.92]

An easy, rapid and environmentally friendly methodology was developed for the extraetion of pyrethroid inseetieide residues from semi permeable membrane deviees (SPMD), based in a mierowave-assisted extraetion, in front of a dialysis method nowadays widely employed. Several solvent sueh as hexane, toluene, aeetonitrile, eyelohexane and ethyl aeetate were tested as mierowave-assisted extraetion solvent. Mixtures of hexane and toluene with aeetone were also assayed and provide better results than single solvents. [Pg.196]

Finally, an equally pressing need is for processes that are more environmentally friendly than those that currently use chromates, volatile solvents, etc. This is an area where the recently developed scientific tools described in this and other chapters will play a major role in assuring that the results are not only greener but are also just as effective or more so than currently used methods. [Pg.1002]

Room temperature ionic liquids arc currently receiving considerable attention as environmentally friendly alternatives to conventional organic solvents in a variety of contexts.144 The ionic liquids have this reputation because of their high stability, inertness and, most importantly, extremely low vapor pressures. Because they are ionic and non-conducting they also possess other unique properties that can influence the yield and outcome of organic transformations. Polymerization in ionic liquids has been reviewed by Kubisa.145 Commonly used ionic liquids are tetra-alkylammonium, tetra-alkylphosphonium, 3-alkyl-l-methylimidazolium (16) or alkyl pyridinium salts (17). Counter-ions are typically PF6 and BF4 though many others are known. [Pg.432]

Almost all urethane materials are synthesized without the use of solvents or water as diluents or earners and are referred to as being 100% solids. This is true of all foams and elastomers. There are many products, however, which do utilize solvents or water, and these are known as solvent-borne and waterborne systems, respectively. In the past, many coatings, adhesives, and binders were formulated using a solvent to reduce viscosity and/or ease application. However, the use of volatile solvents has been dramatically curtailed in favor of more environmentally friendly water (see Section 4.1.3), and now there are many aqueous coatings, adhesives, and associated raw materials. Hydrophilic raw materials capable of being dispersed in water are called water reducible (or water dispersible), meaning they are sufficiently hydrophilic so as to be readily emulsified in water to form stable colloidal dispersions. [Pg.237]

The aqueous medium offers notable advantages with respect to organic solvents (i) it is abimdant, cheap, non-toxic and environmentally friendly, (ii)... [Pg.251]

Ionic liquids, which can be defined as salts that do not crystallize at room temperature [46], have been intensively investigated as environmentally friendly solvents because they have no vapor pressure and, in principle, can be reused more efficiently than conventional solvents. Ionic liquids have found wide application in organometallic catalysis as they facilitate the separation between the charged catalysts and the products. [Pg.14]

The tuning of solubility with a relatively small jump or fall in pressure can possibly bestow many benefits with respect to rates, yields, and selectivity. Reaction parameters can be changed over a wide range. Replacement of solvents with high boiling points by supercritical (SC) fluids offers distinct advantages with respect to removal of the solvent. SC fluids like CO2 are cheap and environmentally friendly the critical temperature of CO2 is 31 C and the critical pressure 73.8 atm (Poliakoff and Howdle, 1995). Eckert and Chandler (1998) have given many examples of the use of SC fluids. Alkylation of phenol with tcrt-butanol in near critical water at 275 °C allows 2- erf-butyl phenol to be formed (a major product when the reaction is kinetically controlled 4-rert-butyl phenol is the major product, when the reaction is... [Pg.172]

Due to scientific and public concern about environmental pollution, new developments in environmental analysis are focused on the implementation of environmental-friendly practices in the laboratories. Main strategies are addressed to saving energy and to reduce solvent consumption with the minimum sample manipulation by using on-site, online, and direct analysis (e.g., biosensors) [42],... [Pg.36]

In Japan, the standard Eco Mark Product Category No. 102 Printing Ink Version 2.6 [26] sets on a voluntary basis standards for an environmentally friendly composition of printing inks. Since introduction of this standard in 1997, more than 90% of all offset inks in Japan were reformulated to inks free from aromatic compounds ( white oil ). To fulfil the above-mentioned standard, the inks should be based on vegetable oils. They should not contain more than 1 vol.% of aromatic hydrocarbons ( white oils ). Additionally, sheet-fed offset inks should not contain more than 30% of crude oil-based solvents and not more than 3% VOC. Web offset inks should contain no more than 45% crude oil solvents (which seems not really to be a progress in comparison to typical standard inks). By the way, it is expected from vegetable oil-based inks that the print products are as deinkable as conventional mineral oil-based offset inks. [Pg.410]


See other pages where Solvent environmentally friendly is mentioned: [Pg.219]    [Pg.126]    [Pg.126]    [Pg.126]    [Pg.219]    [Pg.126]    [Pg.126]    [Pg.126]    [Pg.44]    [Pg.170]    [Pg.40]    [Pg.109]    [Pg.165]    [Pg.23]    [Pg.219]    [Pg.293]    [Pg.729]    [Pg.1112]    [Pg.84]    [Pg.212]    [Pg.77]    [Pg.451]    [Pg.723]    [Pg.72]    [Pg.176]    [Pg.1317]    [Pg.116]    [Pg.655]    [Pg.93]    [Pg.63]    [Pg.167]    [Pg.223]    [Pg.243]    [Pg.284]    [Pg.123]    [Pg.359]    [Pg.620]    [Pg.325]    [Pg.68]   
See also in sourсe #XX -- [ Pg.75 , Pg.773 ]




SEARCH



ENVIRONMENTALLY FRIENDLY

Environmental friendly solvent

Environmental friendly solvent

Friends

© 2024 chempedia.info