Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction internal standards

A) Calibration standard (Solution 1). (B) Cream extract + internal standard (Solution 3). [Pg.261]

GLASS CAPILLARY GC ANALYSIS WITH COLD ON-COLUMN INJECTION OF PIPERINE2 A = pure piperine and B = pepper extract. Internal standard (1) tetrahydropiperine, and piperine (2). Column 25 m x 0.5 m I.D. HTS-OV-1 column, 250°C isothermal. [Pg.53]

Compounds Sensitivity (pgL- ) Sample Extraction Internal Standard Detection ... [Pg.145]

Unintended introduction of the analyte into a sample, extract, internal standard solution and so on, by any route and at any stage during sampling or analysis. [Pg.781]

Caffeine is extracted from beverages by a solid-phase microextraction using an uncoated fused silica fiber. The fiber is suspended in the sample for 5 min and the sample stirred to assist the mass transfer of analyte to the fiber. Immediately after removing the fiber from the sample it is transferred to the gas chromatograph s injection port where the analyte is thermally desorbed. Quantitation is accomplished by using a C3 caffeine solution as an internal standard. [Pg.226]

Quantitative mass spectrometry, also used for pharmaceutical appHcations, involves the use of isotopicaHy labeled internal standards for method calibration and the calculation of percent recoveries (9). Maximum sensitivity is obtained when the mass spectrometer is set to monitor only a few ions, which are characteristic of the target compounds to be quantified, a procedure known as the selected ion monitoring mode (sim). When chlorinated species are to be detected, then two ions from the isotopic envelope can be monitored, and confirmation of the target compound can be based not only on the gc retention time and the mass, but on the ratio of the two ion abundances being close to the theoretically expected value. The spectrometer cycles through the ions in the shortest possible time. This avoids compromising the chromatographic resolution of the gc, because even after extraction the sample contains many compounds in addition to the analyte. To increase sensitivity, some methods use sample concentration techniques. [Pg.548]

An hplc assay was developed suitable for the analysis of enantiomers of ketoprofen (KT), a 2-arylpropionic acid nonsteroidal antiinflammatory dmg (NSAID), in plasma and urine (59). Following the addition of racemic fenprofen as internal standard (IS), plasma containing the KT enantiomers and IS was extracted by Hquid-Hquid extraction at an acidic pH. After evaporation of the organic layer, the dmg and IS were reconstituted in the mobile phase and injected onto the hplc column. The enantiomers were separated at ambient temperature on a commercially available 250 x 4.6 mm amylose carbamate-packed chiral column (chiral AD) with hexane—isopropyl alcohol—trifluoroacetic acid (80 19.9 0.1) as the mobile phase pumped at 1.0 mL/min. The enantiomers of KT were quantified by uv detection with the wavelength set at 254 nm. The assay allows direct quantitation of KT enantiomers in clinical studies in human plasma and urine after adrninistration of therapeutic doses. [Pg.245]

The use of a fused silica capillary column for the GC analysis of the neutral oil extract has provided the means for improving the resolution of components in a more inert system. The sultones are determined by temperature-programmed GC over CP-Sil-5 CB (methyl silicone fluid) in a 25 m x 0.2 mm fused silica capillary column using nonadecane as internal standard. A sample split ratio of 1 100 is recommended for a 3-pl injection. [Pg.448]

For example, if the internal standard is mnch more volatile than the analyte it is likely that more will be lost dnring storage, if it is mnch more polar it may be extracted either mnch more or less efficiently than the analyte during sample work-np, or if the internal standard is different chemically then derivatization procedures may be more or less efficient (it may be argued that as long as this differential behaviour is reproducible, it can be allowed for in the calcnlation procednres bnt significant extra work wonld be required to confirm such reproducibility). [Pg.46]

Figure 5.67 Reconstructed ion chromatograms for Idoxifene and internal standard (ds-Idoxifene using LC-ToF-MS for (a) double-blank human plasma extract, (b) extract of blank human plasma containing internal standard (IS), and (c) control-blank human plasma spiked with Idoxifene at 5 gml , the LOQ of the method. Reprinted from 7. Chromatogr., B, 757, Comparison between liquid chromatography-time-of-flight mass spectrometry and selected-reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of Idoxifene in human plasma , Zhang, H. and Henion, J., 151-159, Copyright (2001), with permission from Elsevier Science. Figure 5.67 Reconstructed ion chromatograms for Idoxifene and internal standard (ds-Idoxifene using LC-ToF-MS for (a) double-blank human plasma extract, (b) extract of blank human plasma containing internal standard (IS), and (c) control-blank human plasma spiked with Idoxifene at 5 gml , the LOQ of the method. Reprinted from 7. Chromatogr., B, 757, Comparison between liquid chromatography-time-of-flight mass spectrometry and selected-reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of Idoxifene in human plasma , Zhang, H. and Henion, J., 151-159, Copyright (2001), with permission from Elsevier Science.
Quantitative TLC (an additional internal standard would be provided the extraction/separation step could be dropped). [Pg.181]

Lipid Screening. The problems of lipid analysis in the newborn is difficult because of the fact that most methods for analysis for lipids require substantial amounts of serum, yet a total lipid determination is very important in various types of disease. This problem can be solved by thin-layer chromatography (59). Figure 38 shows a typical pattern obtained when an extract 7rom 10 microliters of serum is subjected to thin-layer chromatography. If these specimens are scanned, and an internal standard is run, one can obtain a rough approximation of the distribution of the various lipids in the serum. This is shown in Figure 39, in which a normal specimen is run in an adult. [Pg.142]

Figure 38, Patterns obtained from the extract of 10 fd of serum for lipid fraction by thin-layer chromatography. In sequence, starting from the bottom, phospholipids, pee cholesterol, cholesterol aniline as an internal standard, triglycerides, and cholesterol esters. The free fatty acids occur between cholesterol and the internal standard and are only barely visible in the print, on the extreme right. They are readily visible, normally, to the eye. Figure 38, Patterns obtained from the extract of 10 fd of serum for lipid fraction by thin-layer chromatography. In sequence, starting from the bottom, phospholipids, pee cholesterol, cholesterol aniline as an internal standard, triglycerides, and cholesterol esters. The free fatty acids occur between cholesterol and the internal standard and are only barely visible in the print, on the extreme right. They are readily visible, normally, to the eye.
This method requires about 40 g of tobacco which are extracted with ethyl acetate in the presence of ascorbic acid. A trace amount of C-NDELA is added as an internal standard for quantitative analytical work. The filtered extract is concentrated and NDELA is enriched by column chromatography of the concentrate on silica gel. The residues of fractions with p-activity are pooled and redissolved in acetonitrile. Initially, we attempted to separate NDELA on a 3% OV-225 Chromosorb W HP column at 210 C using a GC-TEA system with direct interface similar to the technique developed by Edwards a. for the analysis of NDELA in urine (18). We found this method satisfactory for reference compounds however, it was not useful for an optimal separation of NDELA from the crude concentrate of the tobacco extract (Figure 4). Therefore, we silylated the crude concentrate with BSTFA and an aliquot was analyzed by GC-TEA with direct interface. The chromatographic conditions were 6 ft glass column filled with 3% OV-... [Pg.252]

Beer Samples. The beer samples were examined as part of the American Society of Brewing Chemists (ASBC) and Association of Official Analytical Chemists (AOAC) collaborative studies of NDMA in beer. Duplicate samples were analyzed by the column extraction procedure and the ASBC distillation procedure (35). The AOAC procedure (36) was similar, except that a larger sample (50 vs. 25 g) was examined and sulfamic acid was added to minimize artifactual formation of nitrosamines. Both methods utilize N-nitrosodipropylamine (NDPA) as an internal standard. [Pg.336]

Oxidation of PI with chromium trioxide. Fraction PI was twice acetylated as described above. The peracetylated polysaccharide (75 mg), together with 20 mg of mannitol hexacetate as internal standard was dissolved in 1.5 mL of HCCI3, and treated with 1.89 mL of glacial acetic acid and 189 mg of chromium trioxide, at 50°C. Aliquots were removed at zero, 30, 60 and 120 min, water then added, and the material recovered by extraction with chloroform, hydrolyzed and analysed by GLC of derived alditol acetates. [Pg.551]

In both the GC/MS and the LC-FL analyses selected perdeuterated PAHs were added to the samples prior to extraction for use as internal standards for quantification. [Pg.95]

To validate the analytical procedure recovery experiments are performed. To this end, the CRM is spiked with a known mass of the analytes at a variety of concentration levels (at least three different levels) and the concentrations measured are compared to the expected concentrations in at least three separate experiments. The extraction step has been shown to be a critical step in the analytical procedure and it may be responsible for poor recoveries. The efficiency of this step can be assessed either by repetitive extraction of the sample or by the addition of internal standards prior to the extraction step with the assumption that the latter actually represent the behavior of the analytes of interest. [Pg.100]

Accuracy (systematic error or bias) expresses the closeness of the measured value to the true or actual value. Accuracy is usually expressed as the percentage recovery of added analyte. Acceptable average analyte recovery for determinative procedures is 80-110% for a tolerance of > 100 p-g kg and 60-110% is acceptable for a tolerance of < 100 p-g kg Correction factors are not allowed. Methods utilizing internal standards may have lower analyte absolute recovery values. Internal standard suitability needs to be verified by showing that the extraction efficiencies and response factors of the internal standard are similar to those of the analyte over the entire concentration range. The analyst should be aware that in residue analysis the recovery of the fortified marker residue from the control matrix might not be similar to the recovery from an incurred marker residue. [Pg.85]

The method using GC/MS with selected ion monitoring (SIM) in the electron ionization (El) mode can determine concentrations of alachlor, acetochlor, and metolachlor and other major corn herbicides in raw and finished surface water and groundwater samples. This GC/MS method eliminates interferences and provides similar sensitivity and superior specificity compared with conventional methods such as GC/ECD or GC/NPD, eliminating the need for a confirmatory method by collection of data on numerous ions simultaneously. If there are interferences with the quantitation ion, a confirmation ion is substituted for quantitation purposes. Deuterated analogs of each analyte may be used as internal standards, which compensate for matrix effects and allow for the correction of losses that occur during the analytical procedure. A known amount of the deuterium-labeled compound, which is an ideal internal standard because its chemical and physical properties are essentially identical with those of the unlabeled compound, is carried through the analytical procedure. SPE is required to concentrate the water samples before analysis to determine concentrations reliably at or below 0.05 qg (ppb) and to recover/extract the various analytes from the water samples into a suitable solvent for GC analysis. [Pg.349]

Acetochlor, alachlor, and metolachlor are determined in ground and surface water samples. Deuterated internal standards are added to each water sample, and analytes are extracted using an SPE column. After elution and concentration to an appropriate volume, the analytes are quantitated by GC/MS. [Pg.369]

Analytical accuracy. The mixture of all deuterium-labeled internal standards is added to each water sample before extraction. This does not prevent the loss of the unlabeled herbicides from the sample in subsequent processing steps, but a proportional loss of the deuterated internal standard precludes the need to correct for recovery. Although referring to recovery in this type of analysis is inappropriate, the accuracy of this method should be monitored. [Pg.377]

Wheat samples are extracted with dilute ammonia on the ASE200. The extracts are amended with isotopically labeled internal standards. The extracts are purified by sequential octadecyl reversed-phase solid-phase extraction (Cig SPE) and ethylenediamine-iV-propyl anion exchange (PSA) SPE. The samples are analyzed by LC/MS/MS. This method determines crop residues of flucarbazone-sodium and A-desmethyl flucarbazone with a limit of quantitation (LOQ) of 0.01 mgkg for each analyte. [Pg.490]

The soil residue level is determined from the relative responses of the analytes to the internal standards. A five-point calibration curve is analyzed in triplicate, and the data are analyzed by a weighted 1 /x linear regression model. The calculated slope and intercept from the linear regression are used to calculate the residue levels in the soil samples. A 20% aliquot of the sample extract receives 10 ng of each internal standard... [Pg.494]


See other pages where Extraction internal standards is mentioned: [Pg.456]    [Pg.22]    [Pg.87]    [Pg.456]    [Pg.22]    [Pg.87]    [Pg.214]    [Pg.589]    [Pg.589]    [Pg.616]    [Pg.486]    [Pg.381]    [Pg.245]    [Pg.282]    [Pg.235]    [Pg.34]    [Pg.267]    [Pg.427]    [Pg.194]    [Pg.121]    [Pg.286]    [Pg.407]    [Pg.102]    [Pg.299]    [Pg.438]    [Pg.638]    [Pg.121]    [Pg.421]   
See also in sourсe #XX -- [ Pg.3 , Pg.401 ]




SEARCH



Internal standards

International Standardization

International Standards

Standard Extraction

Standardization international standards

Standardized extracts

© 2024 chempedia.info