Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Packing equipment

Selection of Equipment Packed columns usually are chosen for very corrosive materials, for liquids that foam badly, for either small-or large-diameter towers involving veiy low allowable pressure drops, and for small-scale operations requiring diameters of less than 0.6 m (2 ft). The type of packing is selected on the basis of resistance to corrosion, mechanical strength, capacity for handling the required flows, mass-transfer efficiency, and cost. Economic factors are discussed later in this sec tion. [Pg.1352]

Reactions involving gaseous and liquid reactants are carried out in various types of equipment. Packed columns, spray columns and bubble columns, as well as agitated tanks are all used (Fig. 2). Trickle-bed reactors are widely used in the petroleum industry for hydrodesulphurisation and related processes. In this type of reactor, liquid and gas both flow down through a bed of catalyst particles. The liquid flows around the particles as a thin film, thereby keeping the liquid residence time short and reducing undesirable side reactions. [Pg.3]

In this section, the main types of absorption equipment (packed columns and tray columns) are described, and... [Pg.19]

Before leaving the site, as was performed on arrival, all equipment should be thoroughly rinsed to remove traces of particulate material to avoid between site contamination. The field form should be checked to ensure that all observations have been noted. If any field observations are not applicable at a site, for example, there is no contamination, the relevant box should be struck through so it is clear that the observation was investigated but there was nothing to record. Finally, on departure, the site should be clear with all of the samples and field equipment packed in the rucksacks ready to be taken to the next site. [Pg.82]

Fixed-bed reactors in the form of gas absorption equipment are used commonly for noncatalytic gas-liquid reactions. Here the packed bed serves only to give good contact between the gas and liquid. Both cocurrent and countercurrent operations are used. Countercurrent operation gives the highest reaction rates. Cocurrent operation is preferred if a short liquid residence time is required. [Pg.58]

The furnace and thermostatic mortar. For heating the tube packing, a small electric furnace N has been found to be more satisfactory than a row of gas burners. The type used consists of a silica tube (I s cm. in diameter and 25 cm. long) wound with nichrome wire and contained in an asbestos cylinder, the annular space being lagged the ends of the asbestos cylinder being closed by asbestos semi-circles built round the porcelain furnace tube. The furnace is controlled by a Simmerstat that has been calibrated at 680 against a bimetal pyrometer, and the furnace temperature is checked by this method from time to time. The furnace is equipped with a small steel bar attached to the asbestos and is thus mounted on an ordinary laboratory stand the Simmerstat may then be placed immediately underneath it on the baseplate of this stand, or alternatively the furnace may be built on to the top of the Simmerstat box. [Pg.470]

Samples and calibration standards are prepared for analysis using a 10-mL syringe. Add 10.00 mL of each sample and standard to separate 14-mL screw-cap vials containing 2.00 mL of pentane. Shake vigorously for 1 min to effect the separation. Wait 60 s for the phases to separate. Inject 3.0-pL aliquots of the pentane layer into a GC equipped with a 2-mm internal diameter, 2-m long glass column packed with a stationary phase of 10% squalane on a packing material of 80/100 mesh Chromosorb WAW. Operate the column at 67 °C and a flow rate of 25 mL/min. [Pg.576]

Time, Cost, and Equipment Analysis time can vary from several minutes for samples containing only a few constituents to more than an hour for more complex samples. Preliminary sample preparation may substantially increase the analysis time. Instrumentation for gas chromatography ranges in price from inexpensive (a few thousand dollars) to expensive (more than 50,000). The more expensive models are equipped for capillary columns and include a variety of injection options and more sophisticated detectors, such as a mass spectrometer. Packed columns typically cost 50- 200, and the cost of a capillary column is typically 200- 1000. [Pg.578]

Graham, R. C. Robertson, J. K. Analysis of Trihalomethanes in Soft Drinks, /. Chem. Educ. 1988, 65, 735-737. Trihalomethanes are extracted from soft drinks using a liquid-liquid extraction with pentane. Samples are analyzed using a packed column containing 20% OV-101 on 80/100 mesh Gaschrom Q equipped with an electron capture detector. [Pg.611]

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

Production and Shipment. Estimated adiponitrile production capacities in the U.S. in 1992 were about 625 thousand metric tons and worldwide capacity was in excess of lO metric tons. The DOT/IMO classification for adiponitrile is class 6.1 hazard, UN No. 2205. It requires a POISON label on all containers and is in packing group III. Approved materials of constmction for shipping, storage, and associated transportation equipment are carbon steel and type 316 stainless steel. Either centrifugal or positive displacement pumps may be used. Carbon dioxide or chemical-foam fire extinguishers should be used. There are no specifications for commercial adiponitrile. The typical composition is 99.5 wt % adiponitrile. Impurities that may be present depend on the method of manufacture, and thus, vary depending on the source. [Pg.221]

Rate of Mass Transfer in Bubble Plates. The Murphree vapor efficiency, much like the height of a transfer unit in packed absorbers, characterizes the rate of mass transfer in the equipment. The value of the efficiency depends on a large number of parameters not normally known, and its prediction is therefore difficult and involved. Correlations have led to widely used empirical relationships, which can be used for rough estimates (109,110). The most fundamental approach for tray efficiency estimation, however, summarizing intensive research on this topic, may be found in reference 111. [Pg.42]

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

Pentaerythritol may be nitrated by a batch process at 15.25°C using concentrated nitric acid in a stainless steel vessel equipped with an agitator and cooling coils to keep the reaction temperature at 15—25°C. The PETN is precipitated in a jacketed diluter by adding sufficient water to the solution to reduce the acid concentration to about 30%. The crystals are vacuum filtered and washed with water followed by washes with water containing a small amount of sodium carbonate and then cold water. The water-wet PETN is dissolved in acetone containing a small amount of sodium carbonate at 50°C and reprecipitated with water the yield is about 95%. Impurities include pentaerythritol trinitrate, dipentaerythritol hexanitrate, and tripentaerythritol acetonitrate. Pentaerythritol tetranitrate is shipped wet in water—alcohol in packing similar to that used for primary explosives. [Pg.15]

The principal uses of PCTFE plastics remain in the areas of aeronautical and space, electrical/electronics, cryogenic, chemical, and medical instmmentation industries. AppHcations include chemically resistant electrical insulation and components cryogenic seals, gaskets, valve seats (56,57) and liners instmment parts for medical and chemical equipment (58), and medical packaging fiber optic appHcations (see Fiber optics) seals for the petrochemical /oil industry and electrodes, sample containers, and column packing in analytical chemistry and equipment (59). [Pg.394]


See other pages where Packing equipment is mentioned: [Pg.229]    [Pg.1750]    [Pg.64]    [Pg.1744]    [Pg.97]    [Pg.54]    [Pg.426]    [Pg.328]    [Pg.229]    [Pg.1750]    [Pg.64]    [Pg.1744]    [Pg.97]    [Pg.54]    [Pg.426]    [Pg.328]    [Pg.260]    [Pg.89]    [Pg.112]    [Pg.209]    [Pg.341]    [Pg.652]    [Pg.47]    [Pg.55]    [Pg.219]    [Pg.30]    [Pg.206]    [Pg.386]    [Pg.12]    [Pg.306]    [Pg.348]    [Pg.250]    [Pg.379]    [Pg.384]    [Pg.21]    [Pg.207]    [Pg.477]    [Pg.507]    [Pg.141]    [Pg.142]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Blister packs equipment

Column-packing equipment

Contact Equipment (Packed Towers)

Equipment packed columns

Equipment purchase costs packings

Extraction equipment packed towers

High-performance liquid chromatography column-packing equipment

Lithium batteries packed with equipment

© 2024 chempedia.info