Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrons Electroplating

Gold. Used both in decorative and electronic electroplating applications, about 27.5 t of gold were consumed in the United States in 1990 (8)... [Pg.144]

Electron Configuration distribution of electrons into different shells and orbitals from the lower to higher energy levels Electronegativity measure of the attraction of an element for a bonding pair of electrons Electroplating process where a metal is reduced on to the surface of an object, which serves as the cathode in an electrochemical cell... [Pg.340]

Properties M.w. 629.38 anionic Uses Surfactant for electronic electroplating, etchants, coatings... [Pg.4360]

Electroplating. Platinised titanium-on-niobium anodes are preferred for use ia electroplating precious metals. These anodes find wide apphcation ia the electronics iadustry and ia the creation of fine jewelry. [Pg.120]

Miscellaneous. Ruthenium dioxide-based thick-film resistors have been used as secondary thermometers below I K (92). Ruthenium dioxide-coated anodes ate the most widely used anode for chlorine production (93). Ruthenium(IV) oxide and other compounds ate used in the electronics industry as resistor material in apphcations where thick-film technology is used to print electrical circuits (94) (see Electronic materials). Ruthenium electroplate has similar properties to those of rhodium, but is much less expensive. Electrolytes used for mthenium electroplating (95) include [Ru2Clg(OH2)2N] Na2[Ru(N02)4(N0)0H] [13859-66-0] and (NH 2P uds(NO)] [13820-58-1], Several photocatalytic cycles that generate... [Pg.178]

These include wastewater cleanup for electroplating (75—78), radioactive processing (79—82), landfill leachate (76,83), and municipal wastewater (84—87) ultrapure water production for electronics-grade (88,89), laboratory-grade (90), and pharmaceutical-grade (91) materials and food processing (qv) (9). [Pg.153]

The last technique commonly employed to deposit metals for compound semiconductors is electroplating (150). This technique is usually used where very thick metal layers are desired for very low resistance interconnects or for thick wire bond pads. Another common use of this technique is in the formation of air-bridged interconnects (150), which are popular for high speed electronic and optoelectronic circuits. [Pg.383]

Electronic and Electrical Applications. Sulfolane has been tested quite extensively as the solvent in batteries (qv), particularly for lithium batteries. This is because of its high dielectric constant, low volatUity, exceUent solubilizing characteristics, and aprotic nature. These batteries usuaUy consist of anode, cathode polymeric material, aprotic solvent (sulfolane), and ionizable salt (145—156). Sulfolane has also been patented for use in a wide variety of other electronic and electrical appHcations, eg, as a coil-insulating component, solvent in electronic display devices, as capacitor impregnants, and as a solvent in electroplating baths (157—161). [Pg.70]

Because of the ease with which they can be soldered, electroplated tin—lead coatings of near eutectic composition (62 wt % tin) are extensively used in the electronics industry for coating printed circuit boards and electrical coimectors, lead wires, capacitor and condenser cases, and chassis. [Pg.61]

In 1979, a viable theory to explain the mechanism of chromium electroplating from chromic acid baths was developed (176). An initial layer of polychromates, mainly HCr3 0 Q, is formed contiguous to the outer boundary of the cathode s Helmholtz double layer. Electrons move across the Helmholtz layer by quantum mechanical tunneling to the end groups of the polychromate oriented in the direction of the double layer. Cr(VI) is reduced to Cr(III) in one-electron steps and a colloidal film of chromic dichromate is produced. Chromous dichromate is formed in the film by the same tunneling mechanism, and the Cr(II) forms a complex with sulfate. Bright chromium deposits are obtained from this complex. [Pg.143]

The simplest electroplating baths consist of a solution of a soluble metal salt. Electrons ate suppHed to the conductive metal surface, where electron transfer to and reduction of the dissolved metal ions occur. Such simple electroplating baths ate rarely satisfactory, and additives ate requited to control conductivity, pH, crystal stmcture, throwing power, and other conditions. [Pg.106]

Although metals and alloy substrates account for much of the volume ia electroplating, there is a large and growing amount of plastic surfaces being plated, both for decorative trim and for electronic shielding appHcations. On a smaller scale, other materials that ate plated iaclude wood (qv), plaster, fibers (qv) and cloth materials, and plant and animal tissue, such as leaves, leather (qv), paper (qv), and seasheUs. [Pg.143]

Cadmium. In 1989, U.S. consumption of cadmium for coatings was 1474 t (7), compared to 1552 t in 1970, 2089 t in 1979, and 1230 t in 1985. Cadmium plating amounts to about 15% of total cadmium production (see Cadmiumand cadmium alloys). Of the cadmium being plated in 1989, 30% was for automotive parts, over 22% for electronics, and 18% for industrial fasteners. Because of cadmium s high and weU-pubHcized toxicity and very tight waste restrictions, there are considerable efforts to develop alternative materials, and the quantities of cadmium used in electroplating ate expected to decrease. The price of cadmium anodes in early 1993 was about l/kg. [Pg.143]

Tin. Apphcation of tin on strip steel for can stock has decreased. Nevertheless, tin plating is still done in large volume, and tin plate for can stock was estimated at 11,750 t in 1990 (11). Additionally, 603 t of tin anodes were used for electroplating in electronic apphcations in the United States in 1990. The use of tin in solder manufacture is reported to exceed that used in can stock (12). The cost of tin in early 1993 was 7.50/kg (see Tin and tin alloys). [Pg.144]

Copper and compounds SPA Copper sulphate Copper pyrophosphate Cuprammonium compounds Electroplating Electrical and electronics Etching Pesticides... [Pg.495]

Complex ions used for electroplating are anions. The cathode tends to repel them, and their transport is entirely by diffusion. Conversely, the field near the cathode assists cation transport. Complex cyanides deserve some elaboration in view of their commercial importance. It is improbable that those used are covalent co-ordination compounds, and the covalent bond breaks too slowly to accommodate the speed of electrode reactions. The electronic structure of the cyanide ion is ... [Pg.345]


See other pages where Electrons Electroplating is mentioned: [Pg.558]    [Pg.5779]    [Pg.172]    [Pg.2792]    [Pg.558]    [Pg.5779]    [Pg.172]    [Pg.2792]    [Pg.74]    [Pg.1372]    [Pg.118]    [Pg.214]    [Pg.362]    [Pg.126]    [Pg.352]    [Pg.62]    [Pg.129]    [Pg.9]    [Pg.566]    [Pg.255]    [Pg.257]    [Pg.257]    [Pg.106]    [Pg.106]    [Pg.159]    [Pg.160]    [Pg.163]    [Pg.31]    [Pg.155]    [Pg.297]    [Pg.335]    [Pg.336]    [Pg.339]    [Pg.396]    [Pg.557]   
See also in sourсe #XX -- [ Pg.216 , Pg.471 ]




SEARCH



Electroplating

Electroplating electronic devices

Electroplating electronics applications

© 2024 chempedia.info