Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels reaction/-products

C, b.p. 170 C (decomp.), has a characteristic odour. It is the Diels-Alder product of cyclopentadiene reacting with itself, the exo-form being formed most rapidly but the endo-form is thermodynamically favoured. At temperatures above ISO C a retro-Diels-Alder reaction occurs and cyclopentadiene monomer is regenerated see diene reactions. [Pg.135]

Note that the reaction time in water is considerably shorter than that in organic solvents, despite the fact that the concentration of diene used for the reaction in water was less than one third of that for the reaction in the organic solvents. Contrary to the organic solvents, the reaction mixture in water is heterogeneous. It might well be that the low solubility of the Diels-Alder product (3.10c) in this solution reduces inhibition of the reaction by this compound. Consequently, product inlribition is likely to be more pronounced in the organic media. [Pg.96]

Since the Diels-Alder reaction is so good ifs worth going to some trouble to get back to a recognisable Diels-Alder product Take TM 225 for example. The first D-A disconnection is obvious, but can you find your way back to a second ... [Pg.71]

Recall from Section 7 13 that a stereospecific reaction is one in which each stereoiso mer of a particular starting material yields a different stereoisomeric form of the reaction product In the ex amples shown the product from Diels-Alder cycloaddi tion of 1 3 butadiene to as cinnamic acid is a stereo isomer of the product from trans cinnamic acid Each product although chiral is formed as a racemic mixture... [Pg.410]

Diels-Alder Reactions. The important dimerization between 1,3-dienes and a wide variety of dienoplules to produce cyclohexene derivatives was discovered in 1928 by Otto Diels and Kurt Alder. In 1950 they won the Nobel prize for their pioneering work. Butadiene has to be in the j -cis form in order to participate in these concerted reactions. Typical examples of reaction products from the reaction between butadiene and maleic anhydride (1), or cyclopentadiene (2), or itself (3), are <7 -1,2,3,6-tetrahydrophthaHc anhydride [27813-21 -4] 5-vinyl-2-norbomene [3048-64-4], and 4-vinyl-1-cyclohexene [100-40-3], respectively. [Pg.343]

C-21 dicarboxyhc acids are produced by Westvaco Corporation in Charleston, South Carolina in multimillion kg quantities. The process involves reaction of tall oil fatty acids (TOFA) (containing about 50% oleic acid and 50% hnoleic acid) with acryhc acid [79-10-7] and iodine at 220—250°C for about 2 hours (90). A yield of C-21 as high as 42% was reported. The function of the iodine is apparendy to conjugate the double bond in linoleic acid, after which the acryhc acid adds via a Diels-Alder type reaction to form the cycHc reaction product. Other catalysts have been described and include clay (91), palladium, and sulfur dioxide (92). After the reaction is complete, the unreacted oleic acid is removed by distillation, and the cmde C-21 diacid can be further purified by thin film distillation or molecular distillation. [Pg.64]

A number of special purpose resins are available which employ somewhat unusual acids and diluents. A resin of improved heat resistance is obtained by using Nadic anhydride, the Diels-Alder reaction product of cyclopentadiene and maleic anhydride Figure 25.5). [Pg.699]

Dimethylquinoxaline (303) has been reported to undergo a Diels-Alder reaction with maleic anhydride to give 304, 305 having been postulated to be the reactive form. However, attempted confirmation of this unexpected result has shown that 304 is not the correct structure of the reaction product. " In 1931, other chemical evidence was advanced in support of structure 305,but it would no longer be considered valid. [Pg.428]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

Furthermore highly strained compounds such as bicyclo[3.2.1]oct-l-ene 11, containing a double bond to a bridgehead carbon atom, have been prepared however this strained olefin could be identified only as its Diels-Alder product from subsequent reaction with an added diene." ... [Pg.71]

Show the product of the Diels-Alder reaction of the following diene with 3-buten-2-one, H2C=CHCOCH3. Make sure you show the full stereochemistry of the reaction product. [Pg.508]

The reaction product 136 is not an appropriate hapten for generating catalytic antibody as it does not closely resemble the reaction intermediate 135. Antibody 1E9 was prepared against hapten 137, a stable analog of 135, and the catalyst promoted the Diels-Alder reaction with multiple (> 50) turnovers. [Pg.184]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

To avoid problems with the separation of regiomers, dimethyl acetylene dicarboxylate (DMAD) was chosen as a dienophile. The intermolecular Diels-Alder reactions were performed in refluxing dichlorobenzene (bp 132 °C), while the intramolecular reaction of alkyne tethered pyrazinone required a solvent with a higher boiling point (bromobenzene, bp 156 °C). In the case of 3-methoxy or 3-phenyl pyrazinones a mixture of pyridinones and pyridines was obtained, while for the alkyne tethered analogue only the di-hydrofuropyridinone was isolated as the single reaction product. [Pg.296]

Similar transformations have been performed with Danishefsky s diene and glyoxylate esters [85] catalyzed by bis (oxazoHne)-metal complexes to afford the hetero Diels-Alder product in 70% isolated yield and up to 72% ee. Jorgensen [86,87] reported a highly enantioselective, catalytic hetero Diels-Alder reaction of ketones and similar chiral copper(II) complexes leading to enantiomeric excesses up to 99% (Scheme 31, reaction 2). They also described [88] a highly diastereo- and enantioselective catalytic hetero Diels-Alder reaction of /I, y-imsaturated a-ketoesters with electron-rich alkenes... [Pg.118]

Antioxidant capacities of common individual curcuminoids were determined in vitro by phosphomolybdenum and linoleic acid peroxidation methods. Antioxidant capacities expressed as ascorbic acid equivalents (pmol/g) were 3099 for curcumin, 2833 for demethoxycurcumin, and 2677 for bisdemethoxycurcumin at concentrations of 50 ppm. The same order of antioxidant activity (curcumin > demethoxycurcumin > bisdemethoxycurcumin) was observed when compared with BHT (buty-lated hydroxyl toluene) in linoleic peroxidation tests. The antioxidant activity of curcumin in the presence of ethyl linoleate was demonstrated and six reaction products were identified and structurally characterized. The mechanism proposed for this activity consisted of an oxidative coupling reaction at the 3 position of the curcumin with the lipid and a subsequent intramolecular Diels-Alder reaction. ... [Pg.333]

A corrosion inhibitor with excellent film-forming and film-persistency characteristics is produced by first reacting Cig unsaturated fatty acids with maleic anhydride or fumaiic acid to produce the fatty acid Diels-Alder adduct or the fatty acid-ene reaction product [31]. This reaction product is further reacted in a condensation or hydrolyzation reaction with a polyalcohol to form an acid-anhydride ester corrosion inhibitor. The ester may be reacted with amines, metal hydroxides, metal oxides, ammonia, and combinations thereof to neutralize the ester. Surfactants may be added to tailor the inhibitor formulation to meet the specific needs of the user, that is, the corrosion inhibitor may be formulated to produce an oil-soluble, highly water-dispersible corrosion inhibitor or an oil-dispersible, water-soluble corrosion inhibitor. Suitable carrier solvents may be used as needed to disperse the corrosion inhibitor formulation. [Pg.91]

Release and Reactivity of tf-o-QMs Although the r 2-o-QM Os complexes 11 are stable when exposed to air or dissolved in water, the quinone methide moiety can be released upon oxidation (Scheme 3.8).16 For example, reaction of the Os-based o-QM 12 with 1.5 equivalents of CAN (ceric ammonium nitrate) in the presence of an excess of 3,4-dihydropyran led to elimination of free o-QM and its immediate trapping as the Diels-Alder product tetrahydropyranochromene, 14. Notably, in the absence of the oxidizing agent, complex 12 is completely unreactive with both electron-rich (dihydropyran) and electron-deficient (A-methylmaleimide) dienes. [Pg.73]

Scheme 43) [92]. Reaction of dienophiles such as 4-nitrobenzaldehyde with linker 80 at high temperature gave Diels-Alder products. Dihydro-pyrans were released from the support by Bronsted or Lewis acid-nucleo-phile combinations in moderate to good yield with stereoselectivity for the anti isomer. [Pg.211]

Aza-Diels-Alder reaction between the lactim ether 49, as azadiene, and 3-methyleneoxindole, as dienophile, resulted in an isomeric mixture of the aza-Diels-Alder products 55 and 56 (Equation 4) <20030L3205>. [Pg.267]

Compounds 575, obtained by the Stille coupling reaction, react with PTAD to give high yields of the Diels-Alder products 576 obtained with good to excellent asymmetric induction (Equation 81) <1995SL1264>. [Pg.447]

Similarly, /V-sulfonyl-protected vinylimidazole 597 reacts with PTAD to provide the cycloaddition reaction product 598 which easily undergoes the retro-Diels-Alder reaction upon heating or with acid treatment. The primary product is easily isomerized using a base to the aromatized condensed imidazole 599 (Scheme 95) <1998TL4561>. [Pg.450]

Complexes 17-19 can be written in one valence structure as a, /3-unsaturated carbonyl compounds in which the carbonyl oxygen atom is coordinated to a BF2(OR) Lewis acid. The C=C double bonds of such organic systems are activated toward certain reactions, like Diels-Alder additions, and complexes 17-19 show similar chemistry. Complexes 17 and 18 undergo Diels-Alder additions with isoprene, 2,3-dimethyl-1,3-butadiene, tram-2-methyl-l,3-pentadiene, and cyclopentadiene to give Diels-Alder products 20-23 as shown in Scheme 1 for complex 17 (32). Compounds 20-23 are prepared in crude product yields of 75-98% and are isolated as analytically pure solids in yields of 16-66%. The X-ray structure of the isoprene product 20 has been determined and the ORTEP diagram (shown in Fig. 3) reveals the regiochemistry of the Diels-Alder addition. The C-14=C-15 double bond distance is 1.327(4) A, and the... [Pg.52]

Other sporadic examples of [2 + 2] cycloadditions of olefins on the exo double bond of structurally more complex MCPs, such as methylenecyclo-propenes, allylidene-, and alkenylidenecyclopropanes, have been reported. Thus, dicyclopropylideneethane (2) reacted with TCNE (131) to give the [2 + 2] adduct 164 as a minor product, together with the prevalent [4 + 2] adduct 163 (Scheme 76) [39], The same reaction in a different solvent had been previously reported to furnish exclusively the Diels-Alder product (see Sect. 2.1.2) [5]. [Pg.87]

Whereas the normal AA]1 reaction (pathway (ii)) in CH3CN/10% H O would yield labeled Diels-Alder product 60, reaction of 27b under these conditions gave 180 labeled benzyl alcohol 59 and unlabelled 53. Benzyl cation 58 is lost in the... [Pg.68]

Stable aryl boronates derived from tartaric acid catalyze the reaction of cyclo-pentadiene with vinyl aldehyde with high selectivity. Chiral acyloxy borane (CAB), derived from tartaric acid, has proved to be a very powerful catalyst for the enantioselective Diels-Alder reaction and hetero Diels-Alder reaction. Scheme 5 23 presents an example of a CAB 73 (R = H) catalyzed Diels-Alder reaction of a-bromo-a,/i-cnal 74 with cyclopentadiene. The reaction product is another important intermediate for prostaglandin synthesis. In the presence of... [Pg.283]

Studies also show that by using catalyst 76a or 78 derived from one single chiral tetraol with the same absolute configuration, both enantiomers of the Diels-Alder reaction product can be obtained. For example, reaction of 2-methyl-... [Pg.286]

The complex [Cp2Zr(OTf)2(thf)] is a catalyst for the Diels—Alder reactions of 105 compared to the corresponding thermal reactions [82,83] (Scheme 8.45). The isomer ratio of the reaction products (endo/exo or regioisomers) is higher in catalyzed than in thermal reactions. However, because the zir-conocenium triflate is also a catalyst for the polymerization of 1,3-dienes, the Diels—Alder reaction is sometimes completely suppressed in the case of less reactive dienophile-diene combinations. [Pg.310]

The first stannenes were obtained as reactive intermediates that were identified by their reaction products.570,571 For example, Me2Sn=C(SiMe3)2 (Scheme 20) was prepared by the 1,2-elimination of LiBr, or by a retro-Diels-Alder reaction, and was characterized by cyclodimerization, by ene reactions with alkenes, and by cycloaddition with 1,4-dienes.572... [Pg.869]


See other pages where Diels reaction/-products is mentioned: [Pg.91]    [Pg.262]    [Pg.28]    [Pg.152]    [Pg.102]    [Pg.215]    [Pg.118]    [Pg.401]    [Pg.79]    [Pg.106]    [Pg.431]    [Pg.29]    [Pg.65]    [Pg.239]    [Pg.8]    [Pg.13]    [Pg.166]    [Pg.281]    [Pg.290]    [Pg.296]    [Pg.7]   
See also in sourсe #XX -- [ Pg.98 , Pg.108 , Pg.112 , Pg.193 , Pg.220 , Pg.247 , Pg.249 ]




SEARCH



Diels-Alder Reaction structurally complex natural product

Diels-Alder reaction bicyclic products

Diels-Alder reaction cyclohexene production

Diels-Alder reaction drawing product

Diels-Alder reaction endo product

Diels-Alder reaction polycyclic products

Diels-Alder reaction products

Diels-Alder reaction recognizing products

Hetero Diels-Alder cycloaddition reactions products

Hetero Diels-Alder cycloaddition reactions synthesis of natural heterocyclic products

Heterocyclic products, natural, synthesis hetero Diels-Alder cycloaddition reactions

Homo-Diels-Alder reaction product

Intramolecular Diels-Alder Reactions toward Dihydroaromatic and Aromatic Products

Natural heterocyclic products by hetero Diels-Alder cycloaddition reactions

Natural products, synthesis Diels-Alder reaction

Of natural heterocyclic products by hetero Diels-Alder cycloaddition reactions

Products of Diels-Alder reactions

Synthesis of natural heterocyclic products by hetero Diels-Alder cycloaddition reactions

Transannular natural product synthesis Diels-Alder reaction

© 2024 chempedia.info