Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl oxygen atom

Because the acylated product has a delocahsed lone pair and is less reactive than PhNHi. You may have been surprised that LiAlHi reduction completely removes the carbonyl oxygen atom. To help explain this, please draw the likely intermediate. [Pg.75]

Reductive coupling of carbonyl compounds to yield olefins is achieved with titanium (0), which is freshly prepared by reduction of titanium(III) salts with LiAIH4 or with potassium. The removal of two carbonyl oxygen atoms is driven by T1O2 formation- Yields are often excellent even with sensitive or highly hindered olefins. (J.E. McMurry, 1974, 1976A,B). [Pg.41]

A comparison of the relative basicities of pyrrole, furan and thiophene may be made by comparing the pK values of their 2,5-di-t-butyl derivatives, which were found to be -1.01, —10.01 and —10.16, respectively. In each case protonation was shown by NMR to occur at position 2. The base-strengthening effect of alkyl substitution is clearly apparent by comparison of pyrrole and its alkyl derivatives, e.g. A-methylpyrrole has a pKa. for a-protonation of -2.9 and 2,3,4,5-tetramethylpyrrole has a pK of 4-3.7. In general, protonation of a-alkylpyrroles occurs at the a -position whereas /3-alkylpyrroles are protonated at the adjacent a-position. As expected, electron-withdrawing groups are base-weakening thus A-phenylpyrrole is reported to have a p/sTa of -5.8. The IR spectrum of the hydrochloride of 2-formylpyrrole indicates that protonation occurs mainly at the carbonyl oxygen atom and only to a limited extent at C-5. [Pg.47]

Acyl-, 4-alkoxycarbonyl- and 4-phenylazo-pyrazolin-5-ones present the possibility of a fourth tautomer with an exocyclic double bond and a chelated structure. The molecular structure of (138) has been determined by X-ray crystallography (Table 5). It was shown that the hydroxy group participates in an intramolecular hydrogen bond with the carbonyl oxygen atom of the ethoxycarbonyl group at position 4 (8OCSCII21). On the other hand, the fourth isomer is the most stable in 4-phenylazopyrazolones (139), a chelated phenyl-hydrazone structure. [Pg.214]

Figure 12.10 Diagram showing two subunits of the channel, illustrating the way the selectivity filter is formed. Main-chain atoms line the walls of this narrow passage with carbonyl oxygen atoms pointing into the pore, forming binding sites for ions. (Adapted from D.A. Doyle et al., Sdence 280 69-77, 1998.)... Figure 12.10 Diagram showing two subunits of the channel, illustrating the way the selectivity filter is formed. Main-chain atoms line the walls of this narrow passage with carbonyl oxygen atoms pointing into the pore, forming binding sites for ions. (Adapted from D.A. Doyle et al., Sdence 280 69-77, 1998.)...
Like the photosynthetic reaction center and bacteriorhodopsin, the bacterial ion channel also has tilted transmembrane helices, two in each of the subunits of the homotetrameric molecule that has fourfold symmetry. These transmembrane helices line the central and inner parts of the channel but do not contribute to the remarkable 10,000-fold selectivity for K+ ions over Na+ ions. This crucial property of the channel is achieved through the narrow selectivity filter that is formed by loop regions from thefour subunits and lined by main-chain carbonyl oxygen atoms, to which dehydrated K ions bind. [Pg.248]

The relative basicity of carbonyl oxygen atoms can be measured by studying strength of hydrogen bonding between the carbonyl compound and a hydrogen donor such as phenol. In carbon tetrachloride, values of for 1 1 complex formation for the compounds shown have been measured. Rationalize the observed order of basicity. [Pg.545]

For the activation of a substrate such as 19a via coordination of the two carbonyl oxygen atoms to the metal, one should expect that a hard Lewis acid would be more suitable, since the carbonyl oxygens are hard Lewis bases. Nevertheless, Fu-rukawa et al. succeeded in applying the relative soft metal palladium as catalyst for the 1,3-dipolar cycloaddition reaction between 1 and 19a (Scheme 6.36) [79, 80]. They applied the dicationic Pd-BINAP 54 as the catalyst, and whereas this type of catalytic reactions is often carried out at rt or at 0°C, the reactions catalyzed by 54 required heating at 40 °C in order to proceed. In most cases mixtures of endo-21 and exo-21 were obtained, however, high enantioselectivity of up to 93% were obtained for reactions of some derivatives of 1. [Pg.237]

Judging from the following electrostatic potential maps, which kind of carbonyl compound has the more electrophilic carbonyl carbon atom, a ketone or an acid chloride Which has the more nucleophilic carbonyl oxygen atom Explain. [Pg.694]

The acid-catalvzed hydration reaction begins with protonation of the carbonyl oxygen atom, which places a positive charge on oxygen and makes the carbonyl group more electrophilic. Subsequent nucleophilic addition of water to the protonated aldehyde ot ketone then yields a protonated gem diol, which loses H+ to give the neutral product (Figure 19.5). [Pg.706]

Q Acid catalyst protonates the basic carbonyl oxygen atom, making the aldehyde or ketone a better acceptor for nucleophilic addition. [Pg.706]

A Grignard reaction begins with an acid-base complexation of Vfg2+ to the carbonyl oxygen atom of the aldehyde or ketone, thereby making the carbonyl group a better electrophile. Nucleophilic addition of R then produces a tetrahedral magnesium alkoxide intermediate, and protonation by addition of water... [Pg.708]

An aldehyde or ketone reacts with a primary amine, RNH.2, to yield an imine, in which the carbonyl oxygen atom has been replaced by the =N-R group of the amine. Reaction of the same aldehyde or ketone with a secondary amine, R2NH, yields an enamine, in which the oxygen atom has been replaced by the -NR2 group of the amine and the double bond has moved to a position between the former carbonyl carbon and the neighboring carbon. [Pg.714]

Acid-catalyzed reaction of an aldehyde or ketone with 2 equivalents of a monoalcohol or 1 equivalent of a diol yields an acetal, in which the carbonyl oxygen atom is replaced by two -OK groups from the alcohol. [Pg.720]

Keto-enol tautomerism of carbon) ] compounds is catalyzed by both acids and bases. Acid catalysis occurs by protonation of the carbonyl oxygen atom to give an intermediate cation that Joses H+ from its a carbon to yield a neutral enol (Figure 22.1). This proton loss from the cation intermediate is similar to what occurs during an El reaction when a carbocation loses H+ to form an alkene (Section 11.10). [Pg.843]

Q Protonation of the carbonyl oxygen atom by an acid catalyst HA yields a cation that can be represented by two resonance structures. [Pg.843]

O The carbonyl oxygen atom is protonated by acid catalyst. [Pg.847]

The elasticity of nylon fibers is due in part to hydrogen bonds between adjacent polymer chains. These hydrogen bonds join carbonyl oxygen atoms on one chain to NH groups on adjacent chains (Figure 23.4). [Pg.616]

Spectroscopic measurements indicate that PCP forms hydrogen bonds with carbonyl oxygen atoms of cyclopentadienone in both the ground and transition states, but the transition state is more effectively stabilized than the ground state, so a rate enhancement is observed. [Pg.278]

The excited state of the carbonyl compound is the (n, it ) state where one electron is excited from the HOMO to the LUMO. The SOMO is the n-orbital on the carbonyl oxygen atom. The SOMO is the antibonding jt -orbital. [Pg.20]


See other pages where Carbonyl oxygen atom is mentioned: [Pg.195]    [Pg.438]    [Pg.295]    [Pg.284]    [Pg.43]    [Pg.43]    [Pg.136]    [Pg.209]    [Pg.99]    [Pg.234]    [Pg.234]    [Pg.234]    [Pg.271]    [Pg.250]    [Pg.276]    [Pg.72]    [Pg.136]    [Pg.88]    [Pg.303]    [Pg.316]    [Pg.323]    [Pg.688]    [Pg.703]    [Pg.721]    [Pg.227]    [Pg.478]    [Pg.113]    [Pg.211]    [Pg.420]    [Pg.365]    [Pg.32]   
See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Carbonyl oxides oxygen atom transfer

Carbonyl oxygen

Gold carbonyl oxygen atom

Oxygen atom

Oxygen atomic

© 2024 chempedia.info