Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Costs aromatics

Toluene is the most abundant and lowest cost aromatic material. This is a reason to be the valuable raw material for the production of various chemical products. The main chemical use for toluene Is, in fact, production of benzene by dealkylation. The reaction can be carried out either thermally or catalytically using variety of catalysts including supported metals or metal oxides [1-6], amorphous silica-alumina [7] and zeolites [8-19]. The simplest toluene hydrodealkylation reaction is the reaction in which the methyl group is removed in the presence of the forming mainly methane CeHsCHs + H2 —> CeH0 + CH4... [Pg.552]

PET wastes, proved to be an excellent raw material for low cost aromatic polyester polyols. By transesterification with DEG and (or) propylene glycol or dipropyleneglycol (DPG), liquid, low viscosity and low functionality aromatic polyester polyols were obtained. Due to the low cost, DEG is the preferred glycol for transesterification (reaction 16.3) [4, 6-8, 12]. [Pg.422]

Utilisation of lignin in PU is limited. Lignin used as raw material for manufacture of PU represents a superior utilisation of a waste, because lignin is a waste product of the wood and cellulose industry. Lignin has the advantage of low cost, aromaticity and of course is a renewable resource, but its disadvantages are it is a nonreproducible raw material, with impurities, very dark in colour, with tendency to sinterisation. [Pg.443]

Depending on the polyol component used, there are polyetherurethanes and poly-esterurethanes. With regard to the isocyanate component, a distinction is made between aromatic and ahphatic monomers. The somewhat less costly aromatic systems, however, do not meet the extreme aging resistance requirements of automotive leathers, for example. [Pg.292]

Table 5.28 gives the modifications in physical/chemical characteristics resulting from deeper and deeper hydrotreatment (Martin et al., 1992). The sulfur contents could thus be reduced to first as low as a few hundred ppm, then to a few ppm. The level of aromatics in the selected example drops from 39% to 7% while the cetane number increases from 49 to 60. Note here that such a treatment, possible through experimental means, does not correspond to current industrial practice because of its high cost and its very high hydrogen consumption. [Pg.265]

The elimination of lead, the reduction of aromatics in gasoline, and the desulfurization of diesel fuels are oing to require significant reformulations of these products that will irripiy development of specific additives that allow the refiner to optimize costs while meeting the required specifications. [Pg.354]

In 1987, Toray Industries, Inc., announced the development of a new process for making aromatic nitriles which reportedly halved the production cost, reduced waste treatment requirements, and reduced production time by more than two-thirds, compared with the vapor-phase process used by most producers. The process iavolves the reaction of ben2oic acid (or substituted ben2oic acid) with urea at 220—240°C ia the presence of a metallic catalyst (78). [Pg.225]

The high cost of SF and the incomplete use of fluorine justify its use only for inaccessible ben2otrifluorides. The related Hquid S—F reagent, (diethylarnino)sulfur trifluoride (DAST), (C2H )2NSF2, also effects similar transformations with aromatic carboxyhc acids (108). [Pg.320]

Typical COED syncmde properties are shown in Table 12. The properties of the oil products depend heavily on the severity of hydroprocessing. The degree of severity also markedly affects costs associated with hydrogen production and compression. Syncmdes derived from Western coals have much higher paraffin and lower aromatic content than those produced from Illinois coal. In general, properties of COED products have been found compatible with expected industrial requirements. [Pg.93]

Characterization. In many cases, ftir is a timely and cost-effective method to identify and quantify certain functionaHties in a resin molecule. Based on developed correlations, ftir is routinely used as an efficient method for the analysis of resin aromaticity, olefinic content, and other key functional properties. Near infrared spectroscopy is also quickly becoming a useful tool for on-line process and property control. [Pg.350]

The alcohols, proprietary denatured ethyl alcohol and isopropyl alcohol, are commonly used for E-type inks. Many E-type inks benefit from the addition of small amounts of ethyl acetate, MEK, or normal propyl acetate to the solvent blends. Aromatic hydrocarbon solvents are used for M-type inks. Polystyrene resins are used to reduce the cost of top lacquers. T-type inks are also reduced with aromatic hydrocarbons. Acryflc resins are used to achieve specific properties for V-type inks. Vehicles containing vinyl chloride and vinyl acetate copolymer resins make up the vinyl ink category. Ketones are commonly used solvents for these inks. [Pg.252]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Aliphatic Isocyanates. Aflphatic diisocyanates have traditionally commanded a premium price because the aflphatic amine precursors ate mote expensive than aromatic diamines. They ate most commonly used in appHcafions which support the added cost or where the long-term performance of aromatic isocyanates is unacceptable. Monofuncfional aflphatic isocyanates, such as methyl and -butyl isocyanate, ate used as intermediates in the production of carbamate-based and urea-based insecticides and fungicides (see Fungicides, agricultural Insectcontroltechnology). [Pg.459]

In general, the polymethacrylate esters of the lower alcohols are soluble in aromatic hydrocarbons, esters, ketones, and chlorohydrocarbons. They are insoluble, or only slightly soluble, in aUphatic hydrocarbons and alcohols. The polymethacrylate esters of the higher alcohols (>C ) are soluble in ahphatic hydrocarbons. Cost, toxicity, flammabiUty, volatihty, and chain-transfer activity are the primary considerations in the selection of a suitable solvent. [Pg.265]

Mineral spirits, a type of petroleum distillate popular for use in solvent-based house paints, consist mainly of aUphatic hydrocarbons with a trace of aromatics. This type of solvent finds use in oil- and alkyd-based house paints because of its good solvency with typical house paint binders and its relatively slow evaporation rate which imparts good bmshabiUty, open-time, and leveling. Other properties include lower odor, relatively lower cost, as well as safety and health hazard characteristics comparable to most other organic solvents. [Pg.541]

A polysulfone is characterized by the presence of the sulfone group as part of its repeating unit. Polysulfones may be aUphatic or aromatic. AUphatic polysulfones (R and are alkyl groups) were synthesized by radical-induced copolymerization of olefins and sulfur dioxide and characterized many years ago. However, they never demonstrated significant practical utiUty due to their relatively unattractive physical properties, not withstanding the low cost of their raw materials (1,2). The polysulfones discussed in this article are those based on an aromatic backbone stmcture. The term polysulfones is used almost exclusively to denote aromatic polysulfones. [Pg.460]

The environmental concerns associated with the use of toluene, a toxic and flammable aromatic hydrocarbon, as a gravure ink solvent must be addressed. Whereas ink manufacturers are working on the development of water-based inks, the slow drying times and poor printing quaUties of the prototype products have impeded commercia1i2ation. Furthermore, the high cost of these materials is seen as a barrier to their introduction. [Pg.48]

Another commercially available retarder for sulfur vulcanization is based on an aromatic sulfenamide. Like CTP, this product is most effective ki sulfenamide cure systems, but it also works well ki thiazole systems. Performance properties are generally not affected except for a slight modulus kicrease. In some cases this feature allows for the use of lower levels of accelerator to achieve the desked modulus with the added potential benefits of further scorch delay and lower cost cure system (23). [Pg.238]

Because branched ketones and aromatic hydrocarbons are used for their cost/performance benefits, they became the solvents of choice for many apphcations. Numerous solvent systems had to be reformulated to comply with Rule 66. This usually meant an increase in cost, sometimes accompanied by performance degradation. Rule 66-type regulations were adopted in many other states and cities as well. Federal specifications for coatings and many other solvent-containing materials also incorporate Rule 66 requirements. [Pg.262]

Formulator s Dilemma. The regulatory discussion included a listing of solvents designated as HAP compounds. Emissions of these solvents are to be significantly reduced. For many appHcations this means that less is to be allowed. In a situation where the allowed VOC emission levels are also being reduced, the formulator would like to use the most effective solvents available. In the past, MEK and MIBK were frequently used as active solvents and aromatic hydrocarbons as diluents. These solvents have been popular because they are cost-effective. [Pg.279]

Reformulating to reduce HAP solvents frequently means that solvent blend costs increase. The newer blends are generally not be as effective. For example, many coatings were usually formulated using ketones as the active solvents with aromatic hydrocarbons as diluents. This combination produced the most cost-effective formulations. However, when MEK, MIBK, toluene, and xylene became HAP compounds, less-effective solvents had to be used for reformulation. Esters are the most common ketone replacements, and aUphatic diluents would replace the aromatic hydrocarbons. In this situation, more strong solvent is required compared to the ketone/aromatic formulation and costs increase. The combination of reduced VOC emissions and composition constraints in the form of HAP restrictions have compHcated the formulator s task. [Pg.279]

Solution polymerization can use various solvents, primarily aUphatic and aromatic hydrocarbons. The choice of solvent is usually dictated by cost, avaHabihty, solvency, toxicity, flammabiUty, and polymer stmcture. SSBR polymerization depends on recovery and reuse of the solvent for economical operation as well as operation under the air-quaUty perrnitting of the local, state, and federal mandates involved. [Pg.494]

WU low cost reactions not stoichio-metric 3—4 mol dyes, alkylated aromatic sulfonation ... [Pg.76]

M low cost, easily handable reactions not stoichio-metric generally hydrotrope sulfonation of aromatics using ... [Pg.76]


See other pages where Costs aromatics is mentioned: [Pg.403]    [Pg.403]    [Pg.53]    [Pg.516]    [Pg.91]    [Pg.403]    [Pg.403]    [Pg.53]    [Pg.516]    [Pg.91]    [Pg.167]    [Pg.80]    [Pg.318]    [Pg.322]    [Pg.368]    [Pg.397]    [Pg.154]    [Pg.276]    [Pg.233]    [Pg.246]    [Pg.43]    [Pg.274]    [Pg.245]    [Pg.311]    [Pg.28]    [Pg.429]    [Pg.478]    [Pg.481]    [Pg.481]    [Pg.79]    [Pg.81]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



© 2024 chempedia.info